基于深度数据挖掘和随机森林的人群场景异常动作识别

Israr Akhter, Ahmad Jalal
{"title":"基于深度数据挖掘和随机森林的人群场景异常动作识别","authors":"Israr Akhter, Ahmad Jalal","doi":"10.1109/ICACS55311.2023.10089674","DOIUrl":null,"url":null,"abstract":"Human activities that deviate from the norm are deemed abnormal, and such individuals are referred to as anomalous objects. Employing visual data to detect abnormal behaviour is a complex topic in video processing. This research proposes a novel method for detecting abnormal behaviour in complicated, crowded environments. In this article, we proposed a robust method for abnormal action recognition. We initially processed the data, applying fuzzy c mean and super pixel-based segmentation, extracting the features and tracking the object. The next step is to optimize the data. We used a deep data mining approach via t-distributed stochastic neighbor embedding procedure, and for classification, we applied random forest. We achieved 80.24% accuracy rate for human detection over UCSD dataset, and 79.19% for Shanghai tech dataset. We also got 84.00% accuracy of abnormal action recognition over UCSD dataset and 82.00% over Shanghai tech dataset.","PeriodicalId":357522,"journal":{"name":"2023 4th International Conference on Advancements in Computational Sciences (ICACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Abnormal Action Recognition in Crowd Scenes via Deep Data Mining and Random Forest\",\"authors\":\"Israr Akhter, Ahmad Jalal\",\"doi\":\"10.1109/ICACS55311.2023.10089674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human activities that deviate from the norm are deemed abnormal, and such individuals are referred to as anomalous objects. Employing visual data to detect abnormal behaviour is a complex topic in video processing. This research proposes a novel method for detecting abnormal behaviour in complicated, crowded environments. In this article, we proposed a robust method for abnormal action recognition. We initially processed the data, applying fuzzy c mean and super pixel-based segmentation, extracting the features and tracking the object. The next step is to optimize the data. We used a deep data mining approach via t-distributed stochastic neighbor embedding procedure, and for classification, we applied random forest. We achieved 80.24% accuracy rate for human detection over UCSD dataset, and 79.19% for Shanghai tech dataset. We also got 84.00% accuracy of abnormal action recognition over UCSD dataset and 82.00% over Shanghai tech dataset.\",\"PeriodicalId\":357522,\"journal\":{\"name\":\"2023 4th International Conference on Advancements in Computational Sciences (ICACS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Advancements in Computational Sciences (ICACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACS55311.2023.10089674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Advancements in Computational Sciences (ICACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACS55311.2023.10089674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

偏离正常的人类活动被认为是不正常的,这样的个体被称为异常对象。利用视觉数据检测异常行为是视频处理中的一个复杂课题。本研究提出了一种在复杂拥挤环境中检测异常行为的新方法。本文提出了一种鲁棒的异常动作识别方法。我们首先对数据进行处理,应用模糊c均值和基于超像素的分割,提取特征并跟踪目标。下一步是优化数据。采用t分布随机邻居嵌入法进行深度数据挖掘,采用随机森林进行分类。在UCSD数据集上,人类检测准确率达到80.24%,在上海科技数据集上,准确率达到79.19%。对UCSD数据集和上海科技数据集的异常动作识别准确率分别达到84.00%和82.00%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal Action Recognition in Crowd Scenes via Deep Data Mining and Random Forest
Human activities that deviate from the norm are deemed abnormal, and such individuals are referred to as anomalous objects. Employing visual data to detect abnormal behaviour is a complex topic in video processing. This research proposes a novel method for detecting abnormal behaviour in complicated, crowded environments. In this article, we proposed a robust method for abnormal action recognition. We initially processed the data, applying fuzzy c mean and super pixel-based segmentation, extracting the features and tracking the object. The next step is to optimize the data. We used a deep data mining approach via t-distributed stochastic neighbor embedding procedure, and for classification, we applied random forest. We achieved 80.24% accuracy rate for human detection over UCSD dataset, and 79.19% for Shanghai tech dataset. We also got 84.00% accuracy of abnormal action recognition over UCSD dataset and 82.00% over Shanghai tech dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信