{"title":"基于簇相关旋转的RBF网络初始化特征选择","authors":"I. Czarnowski, P. Jędrzejowicz","doi":"10.1109/CYBConf.2015.7175911","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of the radial basis function network initialization with feature section carried-out independently for each hidden unit. In each case a unique subset of features is derived from respective clusters of instances using the rotation-based ensembles technique. The process of the RBFN design with cluster-dependent features, including initialization and training, is carried-out using the agent-based population learning algorithm. The approach is validated experimentally and the obtained results are compared with the results produced using other methods.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cluster-dependent rotation-based feature selection for the RBF networks initialization\",\"authors\":\"I. Czarnowski, P. Jędrzejowicz\",\"doi\":\"10.1109/CYBConf.2015.7175911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the problem of the radial basis function network initialization with feature section carried-out independently for each hidden unit. In each case a unique subset of features is derived from respective clusters of instances using the rotation-based ensembles technique. The process of the RBFN design with cluster-dependent features, including initialization and training, is carried-out using the agent-based population learning algorithm. The approach is validated experimentally and the obtained results are compared with the results produced using other methods.\",\"PeriodicalId\":177233,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBConf.2015.7175911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cluster-dependent rotation-based feature selection for the RBF networks initialization
The paper addresses the problem of the radial basis function network initialization with feature section carried-out independently for each hidden unit. In each case a unique subset of features is derived from respective clusters of instances using the rotation-based ensembles technique. The process of the RBFN design with cluster-dependent features, including initialization and training, is carried-out using the agent-based population learning algorithm. The approach is validated experimentally and the obtained results are compared with the results produced using other methods.