基于簇相关旋转的RBF网络初始化特征选择

I. Czarnowski, P. Jędrzejowicz
{"title":"基于簇相关旋转的RBF网络初始化特征选择","authors":"I. Czarnowski, P. Jędrzejowicz","doi":"10.1109/CYBConf.2015.7175911","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of the radial basis function network initialization with feature section carried-out independently for each hidden unit. In each case a unique subset of features is derived from respective clusters of instances using the rotation-based ensembles technique. The process of the RBFN design with cluster-dependent features, including initialization and training, is carried-out using the agent-based population learning algorithm. The approach is validated experimentally and the obtained results are compared with the results produced using other methods.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Cluster-dependent rotation-based feature selection for the RBF networks initialization\",\"authors\":\"I. Czarnowski, P. Jędrzejowicz\",\"doi\":\"10.1109/CYBConf.2015.7175911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the problem of the radial basis function network initialization with feature section carried-out independently for each hidden unit. In each case a unique subset of features is derived from respective clusters of instances using the rotation-based ensembles technique. The process of the RBFN design with cluster-dependent features, including initialization and training, is carried-out using the agent-based population learning algorithm. The approach is validated experimentally and the obtained results are compared with the results produced using other methods.\",\"PeriodicalId\":177233,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBConf.2015.7175911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文解决了对每个隐藏单元独立进行特征段的径向基函数网络初始化问题。在每种情况下,使用基于旋转的集成技术从各自的实例集群中派生出独特的特征子集。采用基于智能体的总体学习算法对具有聚类依赖特征的RBFN进行初始化和训练。实验验证了该方法的有效性,并将所得结果与其他方法的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster-dependent rotation-based feature selection for the RBF networks initialization
The paper addresses the problem of the radial basis function network initialization with feature section carried-out independently for each hidden unit. In each case a unique subset of features is derived from respective clusters of instances using the rotation-based ensembles technique. The process of the RBFN design with cluster-dependent features, including initialization and training, is carried-out using the agent-based population learning algorithm. The approach is validated experimentally and the obtained results are compared with the results produced using other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信