{"title":"扰动最大加线性系统的模型预测控制:一种随机方法","authors":"T. Boom, B. Schutter","doi":"10.1109/CDC.2001.980918","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Previously, we (2001) have extended MPC to a class of discrete event systems that can be described by a model that is \"linear\" in the (max, +) algebra. In our previous work we have only considered MPC for the perturbations-free case and for the case with bounded noise and/or modeling errors. We extend our previous results on MPC for perturbed max-plus-linear systems to a stochastic setting. We show that under quite general conditions the resulting optimization problems turn out to be convex and can be solved very efficiently.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Model predictive control for perturbed max-plus-linear systems: a stochastic approach\",\"authors\":\"T. Boom, B. Schutter\",\"doi\":\"10.1109/CDC.2001.980918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Previously, we (2001) have extended MPC to a class of discrete event systems that can be described by a model that is \\\"linear\\\" in the (max, +) algebra. In our previous work we have only considered MPC for the perturbations-free case and for the case with bounded noise and/or modeling errors. We extend our previous results on MPC for perturbed max-plus-linear systems to a stochastic setting. We show that under quite general conditions the resulting optimization problems turn out to be convex and can be solved very efficiently.\",\"PeriodicalId\":131411,\"journal\":{\"name\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2001.980918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model predictive control for perturbed max-plus-linear systems: a stochastic approach
Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Previously, we (2001) have extended MPC to a class of discrete event systems that can be described by a model that is "linear" in the (max, +) algebra. In our previous work we have only considered MPC for the perturbations-free case and for the case with bounded noise and/or modeling errors. We extend our previous results on MPC for perturbed max-plus-linear systems to a stochastic setting. We show that under quite general conditions the resulting optimization problems turn out to be convex and can be solved very efficiently.