火箭模型中ICF燃料压缩研究

V. Jha
{"title":"火箭模型中ICF燃料压缩研究","authors":"V. Jha","doi":"10.11648/j.ajpa.20170506.14","DOIUrl":null,"url":null,"abstract":"Compression of Inertial Confinement Fusion (ICF) fuel as required by Lawson Criterion has been of immense value in ICF studies. In this work, the order of compression has been studied on Rocket Model because a high-order reaction force responsible for compression may be seen to act as a rocket motion. It has been seen that the order of compression of lighter fuel such as D-T may be more effective if irradiated by high power Nd laser. The shocks produced as the reaction (Rocket effect) to the surface ablation generated by pulsed laser beams, compress the fuel which is estimated to be effective when the ratio of initial mass to the accelerated one is of the order of 5. The maximum achievable compression by a single strong shock is not more than 4 for a monatomic gas. For weak coalescing shocks to achieve adiabatic compression, the ablation efficiency is found to be maximum when target velocity equals nearly twice the ablation velocity. In such a case, the implosion efficiency of Rocket Model is found to be about 67 percent; neglecting heat loss.","PeriodicalId":329149,"journal":{"name":"American Journal of Physics and Applications","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Compression of ICF Fuel in Rocket Model\",\"authors\":\"V. Jha\",\"doi\":\"10.11648/j.ajpa.20170506.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compression of Inertial Confinement Fusion (ICF) fuel as required by Lawson Criterion has been of immense value in ICF studies. In this work, the order of compression has been studied on Rocket Model because a high-order reaction force responsible for compression may be seen to act as a rocket motion. It has been seen that the order of compression of lighter fuel such as D-T may be more effective if irradiated by high power Nd laser. The shocks produced as the reaction (Rocket effect) to the surface ablation generated by pulsed laser beams, compress the fuel which is estimated to be effective when the ratio of initial mass to the accelerated one is of the order of 5. The maximum achievable compression by a single strong shock is not more than 4 for a monatomic gas. For weak coalescing shocks to achieve adiabatic compression, the ablation efficiency is found to be maximum when target velocity equals nearly twice the ablation velocity. In such a case, the implosion efficiency of Rocket Model is found to be about 67 percent; neglecting heat loss.\",\"PeriodicalId\":329149,\"journal\":{\"name\":\"American Journal of Physics and Applications\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Physics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.ajpa.20170506.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Physics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajpa.20170506.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

按照劳森准则的要求压缩惯性约束聚变(ICF)燃料在ICF研究中具有巨大的价值。在这项工作中,研究了火箭模型的压缩顺序,因为负责压缩的高阶反作用力可以看作是充当火箭运动。研究表明,用高功率钕激光照射D-T等较轻的燃料,其压缩顺序可能更有效。当初始质量与加速质量之比为5数量级时,脉冲激光束产生的表面烧蚀反应(火箭效应)所产生的激波压缩燃料是有效的。对于单原子气体,单次强激波所能达到的最大压缩量不大于4。弱聚结激波达到绝热压缩时,靶速接近烧蚀速度的2倍时烧蚀效率最大。在这种情况下,火箭模型的内爆效率约为67%;忽略热损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Compression of ICF Fuel in Rocket Model
Compression of Inertial Confinement Fusion (ICF) fuel as required by Lawson Criterion has been of immense value in ICF studies. In this work, the order of compression has been studied on Rocket Model because a high-order reaction force responsible for compression may be seen to act as a rocket motion. It has been seen that the order of compression of lighter fuel such as D-T may be more effective if irradiated by high power Nd laser. The shocks produced as the reaction (Rocket effect) to the surface ablation generated by pulsed laser beams, compress the fuel which is estimated to be effective when the ratio of initial mass to the accelerated one is of the order of 5. The maximum achievable compression by a single strong shock is not more than 4 for a monatomic gas. For weak coalescing shocks to achieve adiabatic compression, the ablation efficiency is found to be maximum when target velocity equals nearly twice the ablation velocity. In such a case, the implosion efficiency of Rocket Model is found to be about 67 percent; neglecting heat loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信