高分辨率卫星图像的上下文分类

Olfa Besbes, N. Boujemaa, Z. Belhadj
{"title":"高分辨率卫星图像的上下文分类","authors":"Olfa Besbes, N. Boujemaa, Z. Belhadj","doi":"10.1109/CIIP.2009.4937878","DOIUrl":null,"url":null,"abstract":"We propose a non-homogeneous Conditional Random Field built over an adjacency graph of superpixels for contextual classification of high-resolution satellite images. By introducing the contextual histogram descriptor, our model includes spatially dependent unary and pairwise potentials that capture contextual interactions of the data as well as the labels. This results the non-homogeneity of the fields which improves the accuracy of the classification. Furthermore, our discriminative model performs a multi-cue combination by incorporating efficiently color, texture, edge, curvilinear continuity and familiar configuration cues. As for potentials, both local and global feature functions are learned using joint boosting whereas a likelihood ratio is learned to derive the pairwise edge potential. In this model, the optimal scene interpretation is inferred using a cluster sampling method, the Swendsen-Wang Cut algorithm. Promising results are shown on SPOT-5 satellite images.","PeriodicalId":349149,"journal":{"name":"2009 IEEE Symposium on Computational Intelligence for Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Contextual classification of high-resolution satellite images\",\"authors\":\"Olfa Besbes, N. Boujemaa, Z. Belhadj\",\"doi\":\"10.1109/CIIP.2009.4937878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a non-homogeneous Conditional Random Field built over an adjacency graph of superpixels for contextual classification of high-resolution satellite images. By introducing the contextual histogram descriptor, our model includes spatially dependent unary and pairwise potentials that capture contextual interactions of the data as well as the labels. This results the non-homogeneity of the fields which improves the accuracy of the classification. Furthermore, our discriminative model performs a multi-cue combination by incorporating efficiently color, texture, edge, curvilinear continuity and familiar configuration cues. As for potentials, both local and global feature functions are learned using joint boosting whereas a likelihood ratio is learned to derive the pairwise edge potential. In this model, the optimal scene interpretation is inferred using a cluster sampling method, the Swendsen-Wang Cut algorithm. Promising results are shown on SPOT-5 satellite images.\",\"PeriodicalId\":349149,\"journal\":{\"name\":\"2009 IEEE Symposium on Computational Intelligence for Image Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Symposium on Computational Intelligence for Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIIP.2009.4937878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Symposium on Computational Intelligence for Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIP.2009.4937878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们提出了一个基于超像素邻接图的非齐次条件随机场,用于高分辨率卫星图像的上下文分类。通过引入上下文直方图描述符,我们的模型包括空间依赖的一元和成对电位,这些电位捕获数据和标签的上下文相互作用。这就消除了场的非均匀性,提高了分类的准确性。此外,我们的判别模型通过有效地结合颜色、纹理、边缘、曲线连续性和熟悉的配置线索来执行多线索组合。对于势,使用联合增强学习局部和全局特征函数,同时学习似然比来推导成对边缘势。在该模型中,使用聚类采样方法Swendsen-Wang Cut算法推断出最优场景解释。SPOT-5卫星图像显示了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contextual classification of high-resolution satellite images
We propose a non-homogeneous Conditional Random Field built over an adjacency graph of superpixels for contextual classification of high-resolution satellite images. By introducing the contextual histogram descriptor, our model includes spatially dependent unary and pairwise potentials that capture contextual interactions of the data as well as the labels. This results the non-homogeneity of the fields which improves the accuracy of the classification. Furthermore, our discriminative model performs a multi-cue combination by incorporating efficiently color, texture, edge, curvilinear continuity and familiar configuration cues. As for potentials, both local and global feature functions are learned using joint boosting whereas a likelihood ratio is learned to derive the pairwise edge potential. In this model, the optimal scene interpretation is inferred using a cluster sampling method, the Swendsen-Wang Cut algorithm. Promising results are shown on SPOT-5 satellite images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信