利用神经网络与限价订单数据预测股票价格的跳跃到达

Milla Mäkinen, Alexandros Iosifidis, M. Gabbouj, J. Kanniainen
{"title":"利用神经网络与限价订单数据预测股票价格的跳跃到达","authors":"Milla Mäkinen, Alexandros Iosifidis, M. Gabbouj, J. Kanniainen","doi":"10.2139/ssrn.3165408","DOIUrl":null,"url":null,"abstract":"This paper proposes a new method for predicting jump arrivals in stock markets with high-frequency limit order book data. We introduce a new model architecture, based on Convolutional Long Short-Term Memory with attention, to apply time series representation learning with memory and to focus the prediction attention on the most important features to improve performance. Using order book data on five liquid U.S. stocks, we provide empirical evidence on the efficacy of the proposed approach. We find that the proposed approach with an attention mechanism outperforms the multi-layer perceptron network as well as the convolutional neural network and Long Short-Term memory model. The use of limit order book data was found to improve the performance of the proposed model in jump prediction, either clearly or marginally, depending on the underlying stock.","PeriodicalId":114865,"journal":{"name":"ERN: Neural Networks & Related Topics (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Predicting Jump Arrivals in Stock Prices Using Neural Networks with Limit Order Book Data\",\"authors\":\"Milla Mäkinen, Alexandros Iosifidis, M. Gabbouj, J. Kanniainen\",\"doi\":\"10.2139/ssrn.3165408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new method for predicting jump arrivals in stock markets with high-frequency limit order book data. We introduce a new model architecture, based on Convolutional Long Short-Term Memory with attention, to apply time series representation learning with memory and to focus the prediction attention on the most important features to improve performance. Using order book data on five liquid U.S. stocks, we provide empirical evidence on the efficacy of the proposed approach. We find that the proposed approach with an attention mechanism outperforms the multi-layer perceptron network as well as the convolutional neural network and Long Short-Term memory model. The use of limit order book data was found to improve the performance of the proposed model in jump prediction, either clearly or marginally, depending on the underlying stock.\",\"PeriodicalId\":114865,\"journal\":{\"name\":\"ERN: Neural Networks & Related Topics (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Neural Networks & Related Topics (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3165408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Neural Networks & Related Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3165408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种利用高频限价单数据预测股票市场跳跃到达的新方法。我们引入了一种新的模型架构,基于卷积长短期记忆与注意,应用时间序列表示学习与记忆,并将预测注意力集中在最重要的特征上,以提高性能。利用五种流动性美国股票的订单簿数据,我们提供了关于所建议方法有效性的经验证据。我们发现该方法的注意机制优于多层感知器网络、卷积神经网络和长短期记忆模型。根据标的股票的不同,使用限价订单簿数据可以明显或间接地提高所提出模型在跳跃预测中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Jump Arrivals in Stock Prices Using Neural Networks with Limit Order Book Data
This paper proposes a new method for predicting jump arrivals in stock markets with high-frequency limit order book data. We introduce a new model architecture, based on Convolutional Long Short-Term Memory with attention, to apply time series representation learning with memory and to focus the prediction attention on the most important features to improve performance. Using order book data on five liquid U.S. stocks, we provide empirical evidence on the efficacy of the proposed approach. We find that the proposed approach with an attention mechanism outperforms the multi-layer perceptron network as well as the convolutional neural network and Long Short-Term memory model. The use of limit order book data was found to improve the performance of the proposed model in jump prediction, either clearly or marginally, depending on the underlying stock.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信