快速预测经皮血氧饱和度的神经网络方法

A. Huong, X. Ngu
{"title":"快速预测经皮血氧饱和度的神经网络方法","authors":"A. Huong, X. Ngu","doi":"10.1109/ISCAIE.2019.8743751","DOIUrl":null,"url":null,"abstract":"This study presented the use of Neural Network (NN) approach in the prediction of transcutaneous oxygen saturation level, StO2. This is to overcome the limitation of using conventional signal processing approaches that are computational exhaustive. The accuracy of the NN predictive model was tested on 35 sets of new noise-corrupted Monte Carlo simulation data. This study found mean absolute error of 2.91± 2.29 % in its predictions while the statistical test revealed a strong correlation between the considered features and the predictions (ρ = 0.000). This work concluded that the proposed technique could promote further advancement in the current technology specifically in the development of portable StO2 measurement system.","PeriodicalId":369098,"journal":{"name":"2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Neural Network approach for rapid prediction of transcutaneous oxygen saturation\",\"authors\":\"A. Huong, X. Ngu\",\"doi\":\"10.1109/ISCAIE.2019.8743751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presented the use of Neural Network (NN) approach in the prediction of transcutaneous oxygen saturation level, StO2. This is to overcome the limitation of using conventional signal processing approaches that are computational exhaustive. The accuracy of the NN predictive model was tested on 35 sets of new noise-corrupted Monte Carlo simulation data. This study found mean absolute error of 2.91± 2.29 % in its predictions while the statistical test revealed a strong correlation between the considered features and the predictions (ρ = 0.000). This work concluded that the proposed technique could promote further advancement in the current technology specifically in the development of portable StO2 measurement system.\",\"PeriodicalId\":369098,\"journal\":{\"name\":\"2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAIE.2019.8743751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 9th Symposium on Computer Applications & Industrial Electronics (ISCAIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAIE.2019.8743751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本研究提出使用神经网络(NN)方法预测经皮血氧饱和度(StO2)。这是为了克服使用传统信号处理方法的局限性,这些方法是计算详尽的。在35组新的蒙特卡罗仿真数据上测试了神经网络预测模型的准确性。该研究发现其预测的平均绝对误差为2.91±2.29%,而统计检验显示所考虑的特征与预测之间存在很强的相关性(ρ = 0.000)。本研究的结论是,该技术可以促进现有技术的进一步发展,特别是在便携式StO2测量系统的开发中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network approach for rapid prediction of transcutaneous oxygen saturation
This study presented the use of Neural Network (NN) approach in the prediction of transcutaneous oxygen saturation level, StO2. This is to overcome the limitation of using conventional signal processing approaches that are computational exhaustive. The accuracy of the NN predictive model was tested on 35 sets of new noise-corrupted Monte Carlo simulation data. This study found mean absolute error of 2.91± 2.29 % in its predictions while the statistical test revealed a strong correlation between the considered features and the predictions (ρ = 0.000). This work concluded that the proposed technique could promote further advancement in the current technology specifically in the development of portable StO2 measurement system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信