开发基于深度学习的大学咨询聊天机器人系统

T. Le-Tien, Tai Nguyen-D.-P, Vy Huynh-Y
{"title":"开发基于深度学习的大学咨询聊天机器人系统","authors":"T. Le-Tien, Tai Nguyen-D.-P, Vy Huynh-Y","doi":"10.1109/imcom53663.2022.9721735","DOIUrl":null,"url":null,"abstract":"Inspired by the recent successes of Deep Learning on Natural Language Processing (NLP), we propose a chatbot system using Deep Learning for Vietnamese Universities consultancy which can be implemented for any university. The system has three important tasks: User’s Intent Recognition, Dialogue Management, and Reply Channels. For the User’s Intent Recognition task, the Pattern Matching method is combined with the Text Classification model using Bidirectional-LSTM which has the Attention mechanism. Besides, we use the Deep Reinforcement Learning architecture to train an Agent for Dialogue Management task. In this paper, we conduct a Proof of Concept to the Ho Chi Minh City University of Technology (HC-MUT). The experimental results achieve an average 89% F1-score of 3 classes of the Text Classification task using Deep Learning, the evaluation result of Dialogue Management that the rate of success achieves by 86%. Our demo version of a production web application is available at https://hcmutbot.herokuapp.com/.","PeriodicalId":367038,"journal":{"name":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Developing a Chatbot system using Deep Learning based for Universities consultancy\",\"authors\":\"T. Le-Tien, Tai Nguyen-D.-P, Vy Huynh-Y\",\"doi\":\"10.1109/imcom53663.2022.9721735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by the recent successes of Deep Learning on Natural Language Processing (NLP), we propose a chatbot system using Deep Learning for Vietnamese Universities consultancy which can be implemented for any university. The system has three important tasks: User’s Intent Recognition, Dialogue Management, and Reply Channels. For the User’s Intent Recognition task, the Pattern Matching method is combined with the Text Classification model using Bidirectional-LSTM which has the Attention mechanism. Besides, we use the Deep Reinforcement Learning architecture to train an Agent for Dialogue Management task. In this paper, we conduct a Proof of Concept to the Ho Chi Minh City University of Technology (HC-MUT). The experimental results achieve an average 89% F1-score of 3 classes of the Text Classification task using Deep Learning, the evaluation result of Dialogue Management that the rate of success achieves by 86%. Our demo version of a production web application is available at https://hcmutbot.herokuapp.com/.\",\"PeriodicalId\":367038,\"journal\":{\"name\":\"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/imcom53663.2022.9721735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 16th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/imcom53663.2022.9721735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

受最近深度学习在自然语言处理(NLP)上的成功启发,我们提出了一个使用深度学习的越南大学咨询聊天机器人系统,该系统可以在任何大学实施。该系统有三个重要的任务:用户意图识别、对话管理和回复通道。对于用户意图识别任务,将模式匹配方法与具有注意机制的双向lstm文本分类模型相结合。此外,我们使用深度强化学习架构来训练Agent进行对话管理任务。在本文中,我们对胡志明市工业大学(HC-MUT)进行了概念验证。实验结果表明,使用深度学习的文本分类任务的3个类别的平均f1分数达到89%,对话管理的评估结果成功率达到86%。我们的生产web应用程序的演示版本可以在https://hcmutbot.herokuapp.com/上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing a Chatbot system using Deep Learning based for Universities consultancy
Inspired by the recent successes of Deep Learning on Natural Language Processing (NLP), we propose a chatbot system using Deep Learning for Vietnamese Universities consultancy which can be implemented for any university. The system has three important tasks: User’s Intent Recognition, Dialogue Management, and Reply Channels. For the User’s Intent Recognition task, the Pattern Matching method is combined with the Text Classification model using Bidirectional-LSTM which has the Attention mechanism. Besides, we use the Deep Reinforcement Learning architecture to train an Agent for Dialogue Management task. In this paper, we conduct a Proof of Concept to the Ho Chi Minh City University of Technology (HC-MUT). The experimental results achieve an average 89% F1-score of 3 classes of the Text Classification task using Deep Learning, the evaluation result of Dialogue Management that the rate of success achieves by 86%. Our demo version of a production web application is available at https://hcmutbot.herokuapp.com/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信