云计算环境下基于机器学习的负荷预测优化

Guozheng Feng, Jianbo Xu, Wei Jian, Zhang Liu
{"title":"云计算环境下基于机器学习的负荷预测优化","authors":"Guozheng Feng, Jianbo Xu, Wei Jian, Zhang Liu","doi":"10.1145/3573834.3574511","DOIUrl":null,"url":null,"abstract":"The load prediction of host resources is a key issue to enhance the cloud computing aid allocation system. With the change of cloud computing resource load displaying extra and extra complicated characteristics, traditional prediction algorithms can solely predict the linear traits of data, and it is tough to precisely predict useful resource usage. In order to enhance the forecasting accuracy of the model, a blended load forecasting algorithm based totally on machine learning is proposed. The machine learning prediction model can nicely match the nonlinear traits of the data. The linear phase of the algorithm makes use of ARIMA prediction, and the nonlinear section makes use of particle swarm optimization algorithm to optimize LSTM prediction. Then, the optimal least squares method is used to redistribute the prediction error weights of the autoregressive differential moving average model (ARIMA) and the long-term and short-term memory network models (LSTM), and finally the prediction results are output. The comparison experiment is carried out with the open actual load data set. The experimental results show that the prediction accuracy of the weight redistribution combination model is significantly higher than that of other traditional prediction models and machine learning prediction models when the prediction time efficiency is similar, and the real-time prediction error of resource load in cloud environment is significantly reduced.","PeriodicalId":345434,"journal":{"name":"Proceedings of the 4th International Conference on Advanced Information Science and System","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load prediction optimization based on machine learning in cloud computing environment\",\"authors\":\"Guozheng Feng, Jianbo Xu, Wei Jian, Zhang Liu\",\"doi\":\"10.1145/3573834.3574511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The load prediction of host resources is a key issue to enhance the cloud computing aid allocation system. With the change of cloud computing resource load displaying extra and extra complicated characteristics, traditional prediction algorithms can solely predict the linear traits of data, and it is tough to precisely predict useful resource usage. In order to enhance the forecasting accuracy of the model, a blended load forecasting algorithm based totally on machine learning is proposed. The machine learning prediction model can nicely match the nonlinear traits of the data. The linear phase of the algorithm makes use of ARIMA prediction, and the nonlinear section makes use of particle swarm optimization algorithm to optimize LSTM prediction. Then, the optimal least squares method is used to redistribute the prediction error weights of the autoregressive differential moving average model (ARIMA) and the long-term and short-term memory network models (LSTM), and finally the prediction results are output. The comparison experiment is carried out with the open actual load data set. The experimental results show that the prediction accuracy of the weight redistribution combination model is significantly higher than that of other traditional prediction models and machine learning prediction models when the prediction time efficiency is similar, and the real-time prediction error of resource load in cloud environment is significantly reduced.\",\"PeriodicalId\":345434,\"journal\":{\"name\":\"Proceedings of the 4th International Conference on Advanced Information Science and System\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 4th International Conference on Advanced Information Science and System\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573834.3574511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Advanced Information Science and System","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573834.3574511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主机资源的负载预测是增强云计算辅助分配系统的关键问题。随着云计算资源负载的变化呈现出额外和额外复杂的特征,传统的预测算法只能预测数据的线性特征,难以准确预测有用资源的使用情况。为了提高模型的预测精度,提出了一种完全基于机器学习的混合负荷预测算法。机器学习预测模型可以很好地匹配数据的非线性特征。算法的线性阶段采用ARIMA预测,非线性部分采用粒子群优化算法对LSTM预测进行优化。然后,利用最优最小二乘法对自回归微分移动平均模型(ARIMA)和长短期记忆网络模型(LSTM)的预测误差权重进行重分布,最后输出预测结果。并与开放的实际负荷数据集进行了对比实验。实验结果表明,在预测时间效率相似的情况下,权重再分配组合模型的预测精度明显高于其他传统预测模型和机器学习预测模型,并且显著降低了云环境下资源负载的实时预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load prediction optimization based on machine learning in cloud computing environment
The load prediction of host resources is a key issue to enhance the cloud computing aid allocation system. With the change of cloud computing resource load displaying extra and extra complicated characteristics, traditional prediction algorithms can solely predict the linear traits of data, and it is tough to precisely predict useful resource usage. In order to enhance the forecasting accuracy of the model, a blended load forecasting algorithm based totally on machine learning is proposed. The machine learning prediction model can nicely match the nonlinear traits of the data. The linear phase of the algorithm makes use of ARIMA prediction, and the nonlinear section makes use of particle swarm optimization algorithm to optimize LSTM prediction. Then, the optimal least squares method is used to redistribute the prediction error weights of the autoregressive differential moving average model (ARIMA) and the long-term and short-term memory network models (LSTM), and finally the prediction results are output. The comparison experiment is carried out with the open actual load data set. The experimental results show that the prediction accuracy of the weight redistribution combination model is significantly higher than that of other traditional prediction models and machine learning prediction models when the prediction time efficiency is similar, and the real-time prediction error of resource load in cloud environment is significantly reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信