基于自适应历史滤波的时空聚类检测与跟踪

J. Rosswog, K. Ghose
{"title":"基于自适应历史滤波的时空聚类检测与跟踪","authors":"J. Rosswog, K. Ghose","doi":"10.1109/ICDMW.2008.93","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of detecting and tracking moving clusters in spatio-temporal data sets. Spatio-temporal data sets contain data elements that move in space over time. Traditional data clustering algorithms work well on static data sets that contain well separated clusters. When traditional techniques are applied to spatio-temporal data they breakdown when the moving data elements intersect the space occupied by elements from another cluster. The goal of this work is to improve the accuracy of traditional data clustering algorithms on spatio-temporal data sets. Many clustering algorithms create clusters based on the distance between the elements. We extend this distance measure to be a function of the position history of the elements. We show through a series of experiments that the use of the history based distance measures greatly improves the performance of existing data clustering algorithms on spatio-temporal data sets. In random data sets we achieve up to a 90% improvement in cluster accuracy. To evaluate the clustering algorithms we created 102 spatio-temporal data sets. We also defined a set of metrics that are used to evaluate the performance of the clustering algorithms on the spatio-temporal data sets.","PeriodicalId":175955,"journal":{"name":"2008 IEEE International Conference on Data Mining Workshops","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Detecting and Tracking Spatio-temporal Clusters with Adaptive History Filtering\",\"authors\":\"J. Rosswog, K. Ghose\",\"doi\":\"10.1109/ICDMW.2008.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of detecting and tracking moving clusters in spatio-temporal data sets. Spatio-temporal data sets contain data elements that move in space over time. Traditional data clustering algorithms work well on static data sets that contain well separated clusters. When traditional techniques are applied to spatio-temporal data they breakdown when the moving data elements intersect the space occupied by elements from another cluster. The goal of this work is to improve the accuracy of traditional data clustering algorithms on spatio-temporal data sets. Many clustering algorithms create clusters based on the distance between the elements. We extend this distance measure to be a function of the position history of the elements. We show through a series of experiments that the use of the history based distance measures greatly improves the performance of existing data clustering algorithms on spatio-temporal data sets. In random data sets we achieve up to a 90% improvement in cluster accuracy. To evaluate the clustering algorithms we created 102 spatio-temporal data sets. We also defined a set of metrics that are used to evaluate the performance of the clustering algorithms on the spatio-temporal data sets.\",\"PeriodicalId\":175955,\"journal\":{\"name\":\"2008 IEEE International Conference on Data Mining Workshops\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2008.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2008.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文研究了在时空数据集中运动聚类的检测和跟踪问题。时空数据集包含随时间在空间中移动的数据元素。传统的数据聚类算法在包含分离良好的聚类的静态数据集上表现良好。当传统技术应用于时空数据时,当移动的数据元素与来自另一个集群的元素所占据的空间相交时,它们就失效了。本文的目标是提高传统数据聚类算法在时空数据集上的准确性。许多聚类算法基于元素之间的距离创建聚类。我们将这个距离度量扩展为元素位置历史的函数。我们通过一系列实验表明,使用基于历史的距离度量大大提高了现有数据聚类算法在时空数据集上的性能。在随机数据集中,我们实现了高达90%的聚类精度提高。为了评估聚类算法,我们创建了102个时空数据集。我们还定义了一组用于评估聚类算法在时空数据集上的性能的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting and Tracking Spatio-temporal Clusters with Adaptive History Filtering
This paper addresses the problem of detecting and tracking moving clusters in spatio-temporal data sets. Spatio-temporal data sets contain data elements that move in space over time. Traditional data clustering algorithms work well on static data sets that contain well separated clusters. When traditional techniques are applied to spatio-temporal data they breakdown when the moving data elements intersect the space occupied by elements from another cluster. The goal of this work is to improve the accuracy of traditional data clustering algorithms on spatio-temporal data sets. Many clustering algorithms create clusters based on the distance between the elements. We extend this distance measure to be a function of the position history of the elements. We show through a series of experiments that the use of the history based distance measures greatly improves the performance of existing data clustering algorithms on spatio-temporal data sets. In random data sets we achieve up to a 90% improvement in cluster accuracy. To evaluate the clustering algorithms we created 102 spatio-temporal data sets. We also defined a set of metrics that are used to evaluate the performance of the clustering algorithms on the spatio-temporal data sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信