{"title":"非结构网格上双楔几何的vi型和v型冲击-冲击相互作用","authors":"P. Halder, K. Sinhamahapatra, Navtej Singh","doi":"10.1260/1759-3107.1.4.225","DOIUrl":null,"url":null,"abstract":"The Euler equations are solved on unstructured triangular meshes for hypersonic flow over double-wedge geometries. The driving algorithm is an upwind biased cell centered finite volume method. AUSM+ method is used to split the fluxes. Edney (1968) studied the shock interactions by impinging an externally generated planar oblique shock on the bow shock generated by a cylinder. Depending upon the parametric conditions Edney classified the shock interactions in different types. Two interaction topologies, namely Type-VI and Type-V and the transition from Type-VI to Type-V are studied in details. Both six-shock and seven-shock configurations of Type-V interaction are presented.","PeriodicalId":350070,"journal":{"name":"International Journal of Hypersonics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Type-VI and Type-V Shock-Shock Interactions on Double-Wedge Geometries Using AUSM+ on Unstructured Grid\",\"authors\":\"P. Halder, K. Sinhamahapatra, Navtej Singh\",\"doi\":\"10.1260/1759-3107.1.4.225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Euler equations are solved on unstructured triangular meshes for hypersonic flow over double-wedge geometries. The driving algorithm is an upwind biased cell centered finite volume method. AUSM+ method is used to split the fluxes. Edney (1968) studied the shock interactions by impinging an externally generated planar oblique shock on the bow shock generated by a cylinder. Depending upon the parametric conditions Edney classified the shock interactions in different types. Two interaction topologies, namely Type-VI and Type-V and the transition from Type-VI to Type-V are studied in details. Both six-shock and seven-shock configurations of Type-V interaction are presented.\",\"PeriodicalId\":350070,\"journal\":{\"name\":\"International Journal of Hypersonics\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Hypersonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1260/1759-3107.1.4.225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hypersonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1260/1759-3107.1.4.225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Type-VI and Type-V Shock-Shock Interactions on Double-Wedge Geometries Using AUSM+ on Unstructured Grid
The Euler equations are solved on unstructured triangular meshes for hypersonic flow over double-wedge geometries. The driving algorithm is an upwind biased cell centered finite volume method. AUSM+ method is used to split the fluxes. Edney (1968) studied the shock interactions by impinging an externally generated planar oblique shock on the bow shock generated by a cylinder. Depending upon the parametric conditions Edney classified the shock interactions in different types. Two interaction topologies, namely Type-VI and Type-V and the transition from Type-VI to Type-V are studied in details. Both six-shock and seven-shock configurations of Type-V interaction are presented.