Ivan Kipelkin, S. Gerasimova, Davud Guseinov, D. Pavlov, V. Vorontsov, A. Mikhaylov, V. Kazantsev
{"title":"Fitzhugh-Nagumo神经元振荡器的记忆模型","authors":"Ivan Kipelkin, S. Gerasimova, Davud Guseinov, D. Pavlov, V. Vorontsov, A. Mikhaylov, V. Kazantsev","doi":"10.1109/DCNA56428.2022.9923075","DOIUrl":null,"url":null,"abstract":"We propose a mathematical model of the Fitzhugh-Nagumo neuron employing memristor-based nonlinearity. The model implements excitable and oscillatory regimes of neuron-like firing. We obtain and analyze various dynamical modes of the memristor-based FitzHugh-Nagumo neuron.","PeriodicalId":110836,"journal":{"name":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memristive model of the Fitzhugh-Nagumo neuronal oscillator\",\"authors\":\"Ivan Kipelkin, S. Gerasimova, Davud Guseinov, D. Pavlov, V. Vorontsov, A. Mikhaylov, V. Kazantsev\",\"doi\":\"10.1109/DCNA56428.2022.9923075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a mathematical model of the Fitzhugh-Nagumo neuron employing memristor-based nonlinearity. The model implements excitable and oscillatory regimes of neuron-like firing. We obtain and analyze various dynamical modes of the memristor-based FitzHugh-Nagumo neuron.\",\"PeriodicalId\":110836,\"journal\":{\"name\":\"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCNA56428.2022.9923075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 6th Scientific School Dynamics of Complex Networks and their Applications (DCNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCNA56428.2022.9923075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Memristive model of the Fitzhugh-Nagumo neuronal oscillator
We propose a mathematical model of the Fitzhugh-Nagumo neuron employing memristor-based nonlinearity. The model implements excitable and oscillatory regimes of neuron-like firing. We obtain and analyze various dynamical modes of the memristor-based FitzHugh-Nagumo neuron.