使用重要性分割观察器的稀有性质的分布式验证

Cyrille Jégourel, Axel Legay, Sean Sedwards, Louis-Marie Traonouez
{"title":"使用重要性分割观察器的稀有性质的分布式验证","authors":"Cyrille Jégourel, Axel Legay, Sean Sedwards, Louis-Marie Traonouez","doi":"10.14279/tuj.eceasst.72.1024","DOIUrl":null,"url":null,"abstract":"Rare properties remain a challenge for statistical model checking (SMC) due to the quadratic scaling of variance with rarity. We address this with a variance reduction framework based on lightweight importance splitting observers. These expose the model-property automaton to allow the construction of score functions for high performance algorithms. \nThe confidence intervals defined for importance splitting make it appealing for SMC, but optimising its performance in the standard way makes distribution inefficient. We show how it is possible to achieve equivalently good results in less time by distributing simpler algorithms. We first explore the challenges posed by importance splitting and present an algorithm optimised for distribution. We then define a specific bounded time logic that is compiled into memory-efficient observers to monitor executions. Finally, we demonstrate our framework on a number of challenging case studies.","PeriodicalId":115235,"journal":{"name":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Distributed Verification of Rare Properties using Importance Splitting Observers\",\"authors\":\"Cyrille Jégourel, Axel Legay, Sean Sedwards, Louis-Marie Traonouez\",\"doi\":\"10.14279/tuj.eceasst.72.1024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rare properties remain a challenge for statistical model checking (SMC) due to the quadratic scaling of variance with rarity. We address this with a variance reduction framework based on lightweight importance splitting observers. These expose the model-property automaton to allow the construction of score functions for high performance algorithms. \\nThe confidence intervals defined for importance splitting make it appealing for SMC, but optimising its performance in the standard way makes distribution inefficient. We show how it is possible to achieve equivalently good results in less time by distributing simpler algorithms. We first explore the challenges posed by importance splitting and present an algorithm optimised for distribution. We then define a specific bounded time logic that is compiled into memory-efficient observers to monitor executions. Finally, we demonstrate our framework on a number of challenging case studies.\",\"PeriodicalId\":115235,\"journal\":{\"name\":\"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14279/tuj.eceasst.72.1024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Commun. Eur. Assoc. Softw. Sci. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14279/tuj.eceasst.72.1024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

由于稀有性对方差的二次标度,稀有性仍然是统计模型检验(SMC)的一个挑战。我们用一个基于轻量级重要性分割观察者的方差减少框架来解决这个问题。它们公开了模型属性自动机,允许为高性能算法构建分数函数。为重要性划分定义的置信区间使其对SMC具有吸引力,但以标准方式优化其性能会使分配效率低下。我们展示了如何通过分配更简单的算法在更短的时间内获得同样好的结果。我们首先探讨了重要性分割带来的挑战,并提出了一种优化分布的算法。然后,我们定义一个特定的有限时间逻辑,该逻辑被编译成内存高效的观察者来监视执行。最后,我们在一些具有挑战性的案例研究中展示了我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Verification of Rare Properties using Importance Splitting Observers
Rare properties remain a challenge for statistical model checking (SMC) due to the quadratic scaling of variance with rarity. We address this with a variance reduction framework based on lightweight importance splitting observers. These expose the model-property automaton to allow the construction of score functions for high performance algorithms. The confidence intervals defined for importance splitting make it appealing for SMC, but optimising its performance in the standard way makes distribution inefficient. We show how it is possible to achieve equivalently good results in less time by distributing simpler algorithms. We first explore the challenges posed by importance splitting and present an algorithm optimised for distribution. We then define a specific bounded time logic that is compiled into memory-efficient observers to monitor executions. Finally, we demonstrate our framework on a number of challenging case studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信