神经图拓扑自动生成的观点及可行的创新方向

A. Damian, Laurentiu Piciu, N. Tapus
{"title":"神经图拓扑自动生成的观点及可行的创新方向","authors":"A. Damian, Laurentiu Piciu, N. Tapus","doi":"10.1109/RoEduNet51892.2020.9324853","DOIUrl":null,"url":null,"abstract":"Training deep neural networks requires knowledge and ample experimental time, as well as computational resources due to the search process of the architectural design. In this work, we review the current main research directions in the area of network architecture and finally propose in contrast a novel architecture, namely MultiGatedUnit, that uses directly learnable self-gating mechanisms for automated graph topology generation, currently in research and experimentation phase.","PeriodicalId":140521,"journal":{"name":"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A view on automated neural graph topology generation and a viable direction of innovation\",\"authors\":\"A. Damian, Laurentiu Piciu, N. Tapus\",\"doi\":\"10.1109/RoEduNet51892.2020.9324853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training deep neural networks requires knowledge and ample experimental time, as well as computational resources due to the search process of the architectural design. In this work, we review the current main research directions in the area of network architecture and finally propose in contrast a novel architecture, namely MultiGatedUnit, that uses directly learnable self-gating mechanisms for automated graph topology generation, currently in research and experimentation phase.\",\"PeriodicalId\":140521,\"journal\":{\"name\":\"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoEduNet51892.2020.9324853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th RoEduNet Conference: Networking in Education and Research (RoEduNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoEduNet51892.2020.9324853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

训练深度神经网络需要知识和充足的实验时间,同时由于建筑设计的搜索过程,也需要计算资源。在这项工作中,我们回顾了当前网络架构领域的主要研究方向,并最终提出了一种新的架构,即multigateunit,它使用可直接学习的自门控机制来自动生成图拓扑,目前处于研究和实验阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A view on automated neural graph topology generation and a viable direction of innovation
Training deep neural networks requires knowledge and ample experimental time, as well as computational resources due to the search process of the architectural design. In this work, we review the current main research directions in the area of network architecture and finally propose in contrast a novel architecture, namely MultiGatedUnit, that uses directly learnable self-gating mechanisms for automated graph topology generation, currently in research and experimentation phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信