Maia:矩阵反转加速近内存

Bahar Asgari, Dheeraj Ramchandani, Amaan Marfatia, Hyesoon Kim
{"title":"Maia:矩阵反转加速近内存","authors":"Bahar Asgari, Dheeraj Ramchandani, Amaan Marfatia, Hyesoon Kim","doi":"10.1109/FPL57034.2022.00049","DOIUrl":null,"url":null,"abstract":"Matrix inversion is an essential and challenging operation in several application domains, such as scientific computing, social networks, and recommendation systems. Since matrix inversion is a memory-bound task, it has the potential of being implemented near memory to efficiently use high memory bandwidth. However, data-dependency patterns in the common matrix-inversion algorithms limit memory bandwidth utilization. To minimize the negative impact of such dependencies on performance, we propose matrix inversion acceleration (Maia), a near-memory FPGA-based implementation of matrix inversion that converts the mathematical dependencies to gate-level dependencies thus reduces the critical-path latency. We implement and evaluate Maia on a high-end Xilinx Ultrascale+ xcu280 FPGA connected to a high-bandwidth memory (HBM2), targeting the data-center Alveo U280 boards. Maia performs matrix inversion 4 x faster than a baseline FPGA implementation without the proposed techniques for resolving dependencies.","PeriodicalId":380116,"journal":{"name":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maia: Matrix Inversion Acceleration Near Memory\",\"authors\":\"Bahar Asgari, Dheeraj Ramchandani, Amaan Marfatia, Hyesoon Kim\",\"doi\":\"10.1109/FPL57034.2022.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix inversion is an essential and challenging operation in several application domains, such as scientific computing, social networks, and recommendation systems. Since matrix inversion is a memory-bound task, it has the potential of being implemented near memory to efficiently use high memory bandwidth. However, data-dependency patterns in the common matrix-inversion algorithms limit memory bandwidth utilization. To minimize the negative impact of such dependencies on performance, we propose matrix inversion acceleration (Maia), a near-memory FPGA-based implementation of matrix inversion that converts the mathematical dependencies to gate-level dependencies thus reduces the critical-path latency. We implement and evaluate Maia on a high-end Xilinx Ultrascale+ xcu280 FPGA connected to a high-bandwidth memory (HBM2), targeting the data-center Alveo U280 boards. Maia performs matrix inversion 4 x faster than a baseline FPGA implementation without the proposed techniques for resolving dependencies.\",\"PeriodicalId\":380116,\"journal\":{\"name\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FPL57034.2022.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 32nd International Conference on Field-Programmable Logic and Applications (FPL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FPL57034.2022.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在科学计算、社会网络和推荐系统等应用领域,矩阵反演是一项重要且具有挑战性的操作。由于矩阵反演是一个内存约束任务,它有可能在内存附近实现,以有效地利用高内存带宽。然而,普通矩阵反转算法中的数据依赖模式限制了内存带宽的利用。为了最大限度地减少这种依赖对性能的负面影响,我们提出了矩阵反演加速(Maia),这是一种基于近内存fpga的矩阵反演实现,可将数学依赖转换为门级依赖,从而减少关键路径延迟。我们在连接高带宽内存(HBM2)的高端Xilinx Ultrascale+ xcu280 FPGA上实现和评估Maia,目标是数据中心Alveo U280板。Maia执行矩阵反演的速度比基线FPGA实现快4倍,没有提出的解决依赖关系的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maia: Matrix Inversion Acceleration Near Memory
Matrix inversion is an essential and challenging operation in several application domains, such as scientific computing, social networks, and recommendation systems. Since matrix inversion is a memory-bound task, it has the potential of being implemented near memory to efficiently use high memory bandwidth. However, data-dependency patterns in the common matrix-inversion algorithms limit memory bandwidth utilization. To minimize the negative impact of such dependencies on performance, we propose matrix inversion acceleration (Maia), a near-memory FPGA-based implementation of matrix inversion that converts the mathematical dependencies to gate-level dependencies thus reduces the critical-path latency. We implement and evaluate Maia on a high-end Xilinx Ultrascale+ xcu280 FPGA connected to a high-bandwidth memory (HBM2), targeting the data-center Alveo U280 boards. Maia performs matrix inversion 4 x faster than a baseline FPGA implementation without the proposed techniques for resolving dependencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信