{"title":"基于数值模拟的地下停车场消防安全评价","authors":"D. Burlacu, I. Anghel, C. Popa, Ionuţ Căşaru","doi":"10.2478/mmce-2018-0003","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents a global fire risk assessment by using fire simulation in an existing underground parking. The simulation is conducted with the Fire Dynamics Simulator, a Computational Fluid Dynamics (CFD) tool and the simulations are performed on a threedimensional model of the parking. Multiple parameters and factors are taken into account in this complex assessment, such as geometry data, ventilation openings (both mechanical and natural), fire detection and fire suppression details. The output of the case study is represented by a large array of data: the time for sprinkler activation, maximum temperatures, smoke flow and overall fire evolution. The intention of the authors is to provide a global fire risk assessment of the parking, based on the fire safety engineering principles.","PeriodicalId":233081,"journal":{"name":"Mathematical Modelling in Civil Engineering","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fire Safety Evaluation of an Underground Car Park Using Numerical Simulation\",\"authors\":\"D. Burlacu, I. Anghel, C. Popa, Ionuţ Căşaru\",\"doi\":\"10.2478/mmce-2018-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents a global fire risk assessment by using fire simulation in an existing underground parking. The simulation is conducted with the Fire Dynamics Simulator, a Computational Fluid Dynamics (CFD) tool and the simulations are performed on a threedimensional model of the parking. Multiple parameters and factors are taken into account in this complex assessment, such as geometry data, ventilation openings (both mechanical and natural), fire detection and fire suppression details. The output of the case study is represented by a large array of data: the time for sprinkler activation, maximum temperatures, smoke flow and overall fire evolution. The intention of the authors is to provide a global fire risk assessment of the parking, based on the fire safety engineering principles.\",\"PeriodicalId\":233081,\"journal\":{\"name\":\"Mathematical Modelling in Civil Engineering\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling in Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mmce-2018-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling in Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mmce-2018-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fire Safety Evaluation of an Underground Car Park Using Numerical Simulation
Abstract This paper presents a global fire risk assessment by using fire simulation in an existing underground parking. The simulation is conducted with the Fire Dynamics Simulator, a Computational Fluid Dynamics (CFD) tool and the simulations are performed on a threedimensional model of the parking. Multiple parameters and factors are taken into account in this complex assessment, such as geometry data, ventilation openings (both mechanical and natural), fire detection and fire suppression details. The output of the case study is represented by a large array of data: the time for sprinkler activation, maximum temperatures, smoke flow and overall fire evolution. The intention of the authors is to provide a global fire risk assessment of the parking, based on the fire safety engineering principles.