SuperPointVO:一种基于CNN特征提取的轻量级视觉里程计

Xiao Han, Yulin Tao, Zhuyi Li, Ruping Cen, Fangzheng Xue
{"title":"SuperPointVO:一种基于CNN特征提取的轻量级视觉里程计","authors":"Xiao Han, Yulin Tao, Zhuyi Li, Ruping Cen, Fangzheng Xue","doi":"10.1109/CACRE50138.2020.9230348","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a lightweight stereo visual odometry (SuperPointVO) based on feature extraction of convolutional neural network(CNN). Compared with the traditional indirect method of VO system, our system replace the hand-engineered feature extraction method with a CNN-based method. Based on the feature extraction network SuperPoint, we discard the redundant descriptor information it extracted, and expand the expression ability of the descriptor through NMS and grid sampling, making it more suitable for VO tasks. We build a complete stereo VO system without loop closing around the modified feature extractor. In the experiments, we evaluate the performance of the system on the KITTI dataset, which is close to other state-of-the-art stereo SLAM system. This shows that the accuracy and robustness of feature extraction methods based on deep learning are comparable to, or even better than the traditional methods in VO tasks.","PeriodicalId":325195,"journal":{"name":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"SuperPointVO: A Lightweight Visual Odometry based on CNN Feature Extraction\",\"authors\":\"Xiao Han, Yulin Tao, Zhuyi Li, Ruping Cen, Fangzheng Xue\",\"doi\":\"10.1109/CACRE50138.2020.9230348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a lightweight stereo visual odometry (SuperPointVO) based on feature extraction of convolutional neural network(CNN). Compared with the traditional indirect method of VO system, our system replace the hand-engineered feature extraction method with a CNN-based method. Based on the feature extraction network SuperPoint, we discard the redundant descriptor information it extracted, and expand the expression ability of the descriptor through NMS and grid sampling, making it more suitable for VO tasks. We build a complete stereo VO system without loop closing around the modified feature extractor. In the experiments, we evaluate the performance of the system on the KITTI dataset, which is close to other state-of-the-art stereo SLAM system. This shows that the accuracy and robustness of feature extraction methods based on deep learning are comparable to, or even better than the traditional methods in VO tasks.\",\"PeriodicalId\":325195,\"journal\":{\"name\":\"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACRE50138.2020.9230348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE50138.2020.9230348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种基于卷积神经网络(CNN)特征提取的轻型立体视觉里程计(SuperPointVO)。与传统的VO系统的间接方法相比,我们的系统用基于cnn的方法取代了手工设计的特征提取方法。基于特征提取网络SuperPoint,丢弃其提取的冗余描述符信息,并通过NMS和网格采样扩展描述符的表达能力,使其更适合VO任务。我们构建了一个完整的立体VO系统,在改进的特征提取器周围没有闭环。在实验中,我们对系统在KITTI数据集上的性能进行了评估,结果与其他最先进的立体SLAM系统接近。这表明在VO任务中,基于深度学习的特征提取方法的准确性和鲁棒性与传统方法相当,甚至优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SuperPointVO: A Lightweight Visual Odometry based on CNN Feature Extraction
In this paper, we propose a lightweight stereo visual odometry (SuperPointVO) based on feature extraction of convolutional neural network(CNN). Compared with the traditional indirect method of VO system, our system replace the hand-engineered feature extraction method with a CNN-based method. Based on the feature extraction network SuperPoint, we discard the redundant descriptor information it extracted, and expand the expression ability of the descriptor through NMS and grid sampling, making it more suitable for VO tasks. We build a complete stereo VO system without loop closing around the modified feature extractor. In the experiments, we evaluate the performance of the system on the KITTI dataset, which is close to other state-of-the-art stereo SLAM system. This shows that the accuracy and robustness of feature extraction methods based on deep learning are comparable to, or even better than the traditional methods in VO tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信