自相关时间序列的凸聚类

Max Revay, V. Solo
{"title":"自相关时间序列的凸聚类","authors":"Max Revay, V. Solo","doi":"10.1109/icassp43922.2022.9747143","DOIUrl":null,"url":null,"abstract":"While clustering in general is a heavily worked area, clustering of auto-correlated time series (CATS) has received relatively little attention. Here, we develop a convex clustering algorithm suited to auto-correlated time series and compare it with a state of the art method. We find the proposed algorithm is able to more accurately identify the true clusters.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convex Clustering for Autocorrelated Time Series\",\"authors\":\"Max Revay, V. Solo\",\"doi\":\"10.1109/icassp43922.2022.9747143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While clustering in general is a heavily worked area, clustering of auto-correlated time series (CATS) has received relatively little attention. Here, we develop a convex clustering algorithm suited to auto-correlated time series and compare it with a state of the art method. We find the proposed algorithm is able to more accurately identify the true clusters.\",\"PeriodicalId\":272439,\"journal\":{\"name\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icassp43922.2022.9747143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9747143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然聚类通常是一个研究较多的领域,但自相关时间序列(CATS)的聚类却很少受到关注。在这里,我们开发了一种适合于自相关时间序列的凸聚类算法,并将其与最先进的方法进行了比较。我们发现该算法能够更准确地识别出真实的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex Clustering for Autocorrelated Time Series
While clustering in general is a heavily worked area, clustering of auto-correlated time series (CATS) has received relatively little attention. Here, we develop a convex clustering algorithm suited to auto-correlated time series and compare it with a state of the art method. We find the proposed algorithm is able to more accurately identify the true clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信