直觉模糊赋范线性空间中二重序列的Fibonacci理想收敛性

Ö. Kişi
{"title":"直觉模糊赋范线性空间中二重序列的Fibonacci理想收敛性","authors":"Ö. Kişi","doi":"10.36753/mathenot.931071","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to research the concept of Fibonacci lacunary ideal convergence of double sequences in intuitionistic fuzzy normed linear spaces (IFNS). Additionally, a new concept, called Fibonacci lacunary convergence, is examined. Fibonacci lacunary I 2 -limit points and Fibonacci lacunary I 2 -cluster points for double sequences in IFNS have been defined and the significant results have been given. Additionally, Fibonacci lacunary Cauchy and Fibonacci lacunary I 2 -Cauchy double sequences in IFNS are worked.","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fibonacci Lacunary Ideal Convergence of Double Sequences in Intuitionistic Fuzzy Normed Linear Spaces\",\"authors\":\"Ö. Kişi\",\"doi\":\"10.36753/mathenot.931071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to research the concept of Fibonacci lacunary ideal convergence of double sequences in intuitionistic fuzzy normed linear spaces (IFNS). Additionally, a new concept, called Fibonacci lacunary convergence, is examined. Fibonacci lacunary I 2 -limit points and Fibonacci lacunary I 2 -cluster points for double sequences in IFNS have been defined and the significant results have been given. Additionally, Fibonacci lacunary Cauchy and Fibonacci lacunary I 2 -Cauchy double sequences in IFNS are worked.\",\"PeriodicalId\":127589,\"journal\":{\"name\":\"Mathematical Sciences and Applications E-Notes\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Sciences and Applications E-Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36753/mathenot.931071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/mathenot.931071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了直觉模糊赋范线性空间中二重序列的斐波那契理想收敛性的概念。此外,一个新的概念,称为斐波那契空间收敛,是检验。定义了IFNS中双序列的Fibonacci库i2极限点和Fibonacci库i2聚类点,并给出了有意义的结果。此外,还研究了IFNS中的斐波那契空库柯西和斐波那契空库I - 2 -柯西双序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fibonacci Lacunary Ideal Convergence of Double Sequences in Intuitionistic Fuzzy Normed Linear Spaces
The purpose of this article is to research the concept of Fibonacci lacunary ideal convergence of double sequences in intuitionistic fuzzy normed linear spaces (IFNS). Additionally, a new concept, called Fibonacci lacunary convergence, is examined. Fibonacci lacunary I 2 -limit points and Fibonacci lacunary I 2 -cluster points for double sequences in IFNS have been defined and the significant results have been given. Additionally, Fibonacci lacunary Cauchy and Fibonacci lacunary I 2 -Cauchy double sequences in IFNS are worked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信