处理抛物控制问题中频谱凝聚现象的块矩法

A. Benabdallah, Franck Boyer, Morgan Morancey
{"title":"处理抛物控制问题中频谱凝聚现象的块矩法","authors":"A. Benabdallah, Franck Boyer, Morgan Morancey","doi":"10.5802/AHL.45","DOIUrl":null,"url":null,"abstract":"This article is devoted to the characterization of the minimal null control time for abstract linear controlled problem. More precisely we aim at giving a precise answer to the following question: what is the minimal time needed to drive the solution of the system starting from any initial condition in a given subspace to zero ? Our setting will encompass a wide variety of systems of coupled one dimensional linear parabolic equations with a scalar control. Following classical ideas we reduce this controllability issue to the resolution of a moment problem on the control and provide a new block resolution technique for this moment problem. The obtained estimates are sharp and hold uniformly for a certain class of operators. This uniformity will allow various applications for parameter dependant control problems and permitted us to deal naturally with the case of algebraically multiple eigenvalues in the underlying generator. Our approach shed light on a new phenomenon: the condensation of eigenvalues (which can cause a non zero minimal null control time in general) can be somehow compensated by the condensation of eigenvectors. We provide various examples (some are abstract systems, others are actual PDE systems) to highlight those new situations we are able to manage by the block resolution of the moment problem we propose.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A block moment method to handle spectral condensation phenomenon in parabolic control problems\",\"authors\":\"A. Benabdallah, Franck Boyer, Morgan Morancey\",\"doi\":\"10.5802/AHL.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is devoted to the characterization of the minimal null control time for abstract linear controlled problem. More precisely we aim at giving a precise answer to the following question: what is the minimal time needed to drive the solution of the system starting from any initial condition in a given subspace to zero ? Our setting will encompass a wide variety of systems of coupled one dimensional linear parabolic equations with a scalar control. Following classical ideas we reduce this controllability issue to the resolution of a moment problem on the control and provide a new block resolution technique for this moment problem. The obtained estimates are sharp and hold uniformly for a certain class of operators. This uniformity will allow various applications for parameter dependant control problems and permitted us to deal naturally with the case of algebraically multiple eigenvalues in the underlying generator. Our approach shed light on a new phenomenon: the condensation of eigenvalues (which can cause a non zero minimal null control time in general) can be somehow compensated by the condensation of eigenvectors. We provide various examples (some are abstract systems, others are actual PDE systems) to highlight those new situations we are able to manage by the block resolution of the moment problem we propose.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/AHL.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/AHL.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究抽象线性控制问题的最小零控制时间的性质。更准确地说,我们的目标是给出以下问题的精确答案:将系统的解从给定子空间的任何初始条件开始到零所需的最小时间是多少?我们的设置将包括各种各样的系统耦合一维线性抛物方程与标量控制。在继承经典思想的基础上,将可控性问题简化为控制上的矩问题的求解,并提出了一种新的矩问题的分块求解技术。所得到的估计对某一类算子是锐利且一致的。这种一致性将允许参数相关控制问题的各种应用,并允许我们自然地处理底层生成器中代数上多个特征值的情况。我们的方法揭示了一种新的现象:特征值的凝聚(通常会导致非零最小零控制时间)可以通过特征向量的凝聚以某种方式补偿。我们提供了各种例子(一些是抽象系统,另一些是实际的PDE系统)来强调我们能够通过我们提出的时刻问题的块解决来管理的新情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A block moment method to handle spectral condensation phenomenon in parabolic control problems
This article is devoted to the characterization of the minimal null control time for abstract linear controlled problem. More precisely we aim at giving a precise answer to the following question: what is the minimal time needed to drive the solution of the system starting from any initial condition in a given subspace to zero ? Our setting will encompass a wide variety of systems of coupled one dimensional linear parabolic equations with a scalar control. Following classical ideas we reduce this controllability issue to the resolution of a moment problem on the control and provide a new block resolution technique for this moment problem. The obtained estimates are sharp and hold uniformly for a certain class of operators. This uniformity will allow various applications for parameter dependant control problems and permitted us to deal naturally with the case of algebraically multiple eigenvalues in the underlying generator. Our approach shed light on a new phenomenon: the condensation of eigenvalues (which can cause a non zero minimal null control time in general) can be somehow compensated by the condensation of eigenvectors. We provide various examples (some are abstract systems, others are actual PDE systems) to highlight those new situations we are able to manage by the block resolution of the moment problem we propose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信