自适应时间抗混叠

Adam Marrs, J. Spjut, Holger Grün, Rahul Sathe, M. McGuire
{"title":"自适应时间抗混叠","authors":"Adam Marrs, J. Spjut, Holger Grün, Rahul Sathe, M. McGuire","doi":"10.1145/3231578.3231579","DOIUrl":null,"url":null,"abstract":"We introduce a pragmatic algorithm for real-time adaptive super-sampling in games. It extends temporal antialiasing of rasterized images with adaptive ray tracing, and conforms to the constraints of a commercial game engine and today's GPU ray tracing APIs. The algorithm removes blurring and ghosting artifacts associated with standard temporal antialiasing and achieves quality approaching 8x supersampling of geometry, shading, and materials while staying within the 33ms frame budget required of most games.","PeriodicalId":354787,"journal":{"name":"Proceedings of the Conference on High-Performance Graphics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Adaptive temporal antialiasing\",\"authors\":\"Adam Marrs, J. Spjut, Holger Grün, Rahul Sathe, M. McGuire\",\"doi\":\"10.1145/3231578.3231579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a pragmatic algorithm for real-time adaptive super-sampling in games. It extends temporal antialiasing of rasterized images with adaptive ray tracing, and conforms to the constraints of a commercial game engine and today's GPU ray tracing APIs. The algorithm removes blurring and ghosting artifacts associated with standard temporal antialiasing and achieves quality approaching 8x supersampling of geometry, shading, and materials while staying within the 33ms frame budget required of most games.\",\"PeriodicalId\":354787,\"journal\":{\"name\":\"Proceedings of the Conference on High-Performance Graphics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on High-Performance Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3231578.3231579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High-Performance Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3231578.3231579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

介绍了一种实用的游戏实时自适应超采样算法。它通过自适应光线跟踪扩展了栅格化图像的时间抗锯齿,并符合商业游戏引擎和当今GPU光线跟踪api的约束。该算法消除了与标准时间抗锯齿相关的模糊和重影伪影,并实现了接近8倍的几何、阴影和材料超采样的质量,同时保持在大多数游戏所需的33毫秒帧预算内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive temporal antialiasing
We introduce a pragmatic algorithm for real-time adaptive super-sampling in games. It extends temporal antialiasing of rasterized images with adaptive ray tracing, and conforms to the constraints of a commercial game engine and today's GPU ray tracing APIs. The algorithm removes blurring and ghosting artifacts associated with standard temporal antialiasing and achieves quality approaching 8x supersampling of geometry, shading, and materials while staying within the 33ms frame budget required of most games.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信