探索西班牙语命名实体识别中条件随机场的无监督特征

J. Copara, J. Ochoa, Camilo Thorne, Goran Glavas
{"title":"探索西班牙语命名实体识别中条件随机场的无监督特征","authors":"J. Copara, J. Ochoa, Camilo Thorne, Goran Glavas","doi":"10.1109/BRACIS.2016.059","DOIUrl":null,"url":null,"abstract":"Unsupervised features such as word representations mostly given by word embeddings have been shown significantly improve semi supervised Named Entity Recognition (NER) for English language. In this work we investigate whether unsupervised features can boost (semi) supervised NER in Spanish. To do so, we use word representations and collocations as additional features in a linear chain Conditional Random Field (CRF) classifier. Experimental results (82.44% F-score on the CoNLL-2002 corpus and 65.72% F-score on Ancora Corpus) show that our approach is comparable to some state-of-art Deep Learning approaches for Spanish, in particular when using cross-lingual Word Representations.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exploring Unsupervised Features in Conditional Random Fields for Spanish Named Entity Recognition\",\"authors\":\"J. Copara, J. Ochoa, Camilo Thorne, Goran Glavas\",\"doi\":\"10.1109/BRACIS.2016.059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised features such as word representations mostly given by word embeddings have been shown significantly improve semi supervised Named Entity Recognition (NER) for English language. In this work we investigate whether unsupervised features can boost (semi) supervised NER in Spanish. To do so, we use word representations and collocations as additional features in a linear chain Conditional Random Field (CRF) classifier. Experimental results (82.44% F-score on the CoNLL-2002 corpus and 65.72% F-score on Ancora Corpus) show that our approach is comparable to some state-of-art Deep Learning approaches for Spanish, in particular when using cross-lingual Word Representations.\",\"PeriodicalId\":183149,\"journal\":{\"name\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BRACIS.2016.059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

无监督特征,如主要由词嵌入给出的词表示,已被证明显著改善了英语语言的半监督命名实体识别(NER)。在这项工作中,我们研究了无监督特征是否可以提高西班牙语的(半)监督NER。为此,我们在线性链条件随机场(CRF)分类器中使用单词表示和搭配作为附加特征。实验结果(conl -2002语料库上的f值为82.44%,在Ancora语料库上的f值为65.72%)表明,我们的方法与西班牙语的一些最先进的深度学习方法相当,特别是在使用跨语言单词表示时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Unsupervised Features in Conditional Random Fields for Spanish Named Entity Recognition
Unsupervised features such as word representations mostly given by word embeddings have been shown significantly improve semi supervised Named Entity Recognition (NER) for English language. In this work we investigate whether unsupervised features can boost (semi) supervised NER in Spanish. To do so, we use word representations and collocations as additional features in a linear chain Conditional Random Field (CRF) classifier. Experimental results (82.44% F-score on the CoNLL-2002 corpus and 65.72% F-score on Ancora Corpus) show that our approach is comparable to some state-of-art Deep Learning approaches for Spanish, in particular when using cross-lingual Word Representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信