{"title":"实时情境影响评估的多模态模型","authors":"J. Vice, M. Khan, S. Yanushkevich","doi":"10.1109/CogMI48466.2019.00020","DOIUrl":null,"url":null,"abstract":"Most affect classification schemes rely on near accurate single-cue models resulting in less than required accuracy under certain peculiar conditions. We investigate how the holism of a multimodal solution could be exploited for affect classification. This paper presents the design and implementation of a prototype, stand-alone, real-time multimodal affective state classification system. The presented system utilizes speech and facial muscle movements to create a holistic classifier. The system combines a facial expression classifier and a speech classifier that analyses speech through paralanguage and propositional content. The proposed classification scheme includes a Support Vector Machine (SVM) - paralanguage; a K-Nearest Neighbor (KNN) - propositional content and an InceptionV3 neural network - facial expressions of affective states. The SVM and Inception models boasted respective validation accuracies of 99.2% and 92.78%.","PeriodicalId":116160,"journal":{"name":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multimodal Models for Contextual Affect Assessment in Real-Time\",\"authors\":\"J. Vice, M. Khan, S. Yanushkevich\",\"doi\":\"10.1109/CogMI48466.2019.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most affect classification schemes rely on near accurate single-cue models resulting in less than required accuracy under certain peculiar conditions. We investigate how the holism of a multimodal solution could be exploited for affect classification. This paper presents the design and implementation of a prototype, stand-alone, real-time multimodal affective state classification system. The presented system utilizes speech and facial muscle movements to create a holistic classifier. The system combines a facial expression classifier and a speech classifier that analyses speech through paralanguage and propositional content. The proposed classification scheme includes a Support Vector Machine (SVM) - paralanguage; a K-Nearest Neighbor (KNN) - propositional content and an InceptionV3 neural network - facial expressions of affective states. The SVM and Inception models boasted respective validation accuracies of 99.2% and 92.78%.\",\"PeriodicalId\":116160,\"journal\":{\"name\":\"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CogMI48466.2019.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE First International Conference on Cognitive Machine Intelligence (CogMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CogMI48466.2019.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multimodal Models for Contextual Affect Assessment in Real-Time
Most affect classification schemes rely on near accurate single-cue models resulting in less than required accuracy under certain peculiar conditions. We investigate how the holism of a multimodal solution could be exploited for affect classification. This paper presents the design and implementation of a prototype, stand-alone, real-time multimodal affective state classification system. The presented system utilizes speech and facial muscle movements to create a holistic classifier. The system combines a facial expression classifier and a speech classifier that analyses speech through paralanguage and propositional content. The proposed classification scheme includes a Support Vector Machine (SVM) - paralanguage; a K-Nearest Neighbor (KNN) - propositional content and an InceptionV3 neural network - facial expressions of affective states. The SVM and Inception models boasted respective validation accuracies of 99.2% and 92.78%.