基于相似学习的少镜头学习心电时间序列分类

Priyanka Gupta, Sathvik Bhaskarpandit, Manik Gupta
{"title":"基于相似学习的少镜头学习心电时间序列分类","authors":"Priyanka Gupta, Sathvik Bhaskarpandit, Manik Gupta","doi":"10.1109/DICTA52665.2021.9647357","DOIUrl":null,"url":null,"abstract":"Using deep learning models to classify time series data generated from the Internet of Things (IoT) devices requires a large amount of labeled data. However, due to constrained resources available in IoT devices, it is often difficult to accommodate training using large data sets. This paper proposes and demonstrates a Similarity Learning-based Few Shot Learning for ECG arrhythmia classification using Siamese Convolutional Neural Networks. Few shot learning resolves the data scarcity issue by identifying novel classes from very few labeled examples. Few Shot Learning relies first on pretraining the model on a related relatively large database, and then the learning is used for further adaptation towards few examples available per class.Our experiments evaluate the performance accuracy with respect to K (number of instances per class) for ECG time series data classification. The accuracy with 5- shot learning is 92.25% which marginally improves with further increase in K. We also compare the performance of our method against other well-established similarity learning techniques such as Dynamic Time Warping (DTW), Euclidean Distance (ED), and a deep learning model - Long Short Term Memory Fully Convolutional Network (LSTM-FCN) with the same amount of data and conclude that our method outperforms them for a limited dataset size. For K=5, the accuracies obtained are 57%, 54%, 33%, and 92% approximately for ED, DTW, LSTM-FCN, and SCNN, respectively.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Similarity Learning based Few Shot Learning for ECG Time Series Classification\",\"authors\":\"Priyanka Gupta, Sathvik Bhaskarpandit, Manik Gupta\",\"doi\":\"10.1109/DICTA52665.2021.9647357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using deep learning models to classify time series data generated from the Internet of Things (IoT) devices requires a large amount of labeled data. However, due to constrained resources available in IoT devices, it is often difficult to accommodate training using large data sets. This paper proposes and demonstrates a Similarity Learning-based Few Shot Learning for ECG arrhythmia classification using Siamese Convolutional Neural Networks. Few shot learning resolves the data scarcity issue by identifying novel classes from very few labeled examples. Few Shot Learning relies first on pretraining the model on a related relatively large database, and then the learning is used for further adaptation towards few examples available per class.Our experiments evaluate the performance accuracy with respect to K (number of instances per class) for ECG time series data classification. The accuracy with 5- shot learning is 92.25% which marginally improves with further increase in K. We also compare the performance of our method against other well-established similarity learning techniques such as Dynamic Time Warping (DTW), Euclidean Distance (ED), and a deep learning model - Long Short Term Memory Fully Convolutional Network (LSTM-FCN) with the same amount of data and conclude that our method outperforms them for a limited dataset size. For K=5, the accuracies obtained are 57%, 54%, 33%, and 92% approximately for ED, DTW, LSTM-FCN, and SCNN, respectively.\",\"PeriodicalId\":424950,\"journal\":{\"name\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA52665.2021.9647357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

使用深度学习模型对物联网(IoT)设备生成的时间序列数据进行分类需要大量的标记数据。然而,由于物联网设备中可用的资源有限,通常很难适应使用大型数据集的训练。本文提出并演示了一种基于相似学习的基于Siamese卷积神经网络的心电心律失常分类方法。少数镜头学习通过从很少的标记示例中识别新类来解决数据稀缺性问题。Few Shot Learning首先依赖于在相关的相对较大的数据库上预训练模型,然后学习用于进一步适应每个类可用的少量示例。我们的实验评估了相对于K(每类实例数)的ECG时间序列数据分类的性能准确性。5次学习的准确率为92.25%,随着k的进一步增加,精确度会有所提高。我们还将我们的方法与其他成熟的相似学习技术(如动态时间翘曲(DTW),欧氏距离(ED)和深度学习模型-长短期记忆全卷积网络(LSTM-FCN)进行了性能比较,并得出结论,我们的方法在有限的数据集大小下优于它们。当K=5时,ED、DTW、LSTM-FCN和SCNN的准确率分别约为57%、54%、33%和92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity Learning based Few Shot Learning for ECG Time Series Classification
Using deep learning models to classify time series data generated from the Internet of Things (IoT) devices requires a large amount of labeled data. However, due to constrained resources available in IoT devices, it is often difficult to accommodate training using large data sets. This paper proposes and demonstrates a Similarity Learning-based Few Shot Learning for ECG arrhythmia classification using Siamese Convolutional Neural Networks. Few shot learning resolves the data scarcity issue by identifying novel classes from very few labeled examples. Few Shot Learning relies first on pretraining the model on a related relatively large database, and then the learning is used for further adaptation towards few examples available per class.Our experiments evaluate the performance accuracy with respect to K (number of instances per class) for ECG time series data classification. The accuracy with 5- shot learning is 92.25% which marginally improves with further increase in K. We also compare the performance of our method against other well-established similarity learning techniques such as Dynamic Time Warping (DTW), Euclidean Distance (ED), and a deep learning model - Long Short Term Memory Fully Convolutional Network (LSTM-FCN) with the same amount of data and conclude that our method outperforms them for a limited dataset size. For K=5, the accuracies obtained are 57%, 54%, 33%, and 92% approximately for ED, DTW, LSTM-FCN, and SCNN, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信