Yilin Lyu, Wei Jiang, Yaniun Lin, L. Voros, Miao Zhang, B. Mueller, B. Mychalczak, Yulin Song
{"title":"基于Wasserstein生成对抗网络的CT图像运动盲模糊去除","authors":"Yilin Lyu, Wei Jiang, Yaniun Lin, L. Voros, Miao Zhang, B. Mueller, B. Mychalczak, Yulin Song","doi":"10.1109/CISP-BMEI.2018.8633203","DOIUrl":null,"url":null,"abstract":"Advanced deblurring techniques for computed tomography (CT) images are necessary and crucial to the improvement of accuracy of patient diagnosis in radiology and patient setup and treatment response assessment in radiation oncology. Currently, medical image deblurring is a challenging technical problem due to the unpredictability of patient motion. This paper introduces a new method of computed tomography image deblurring based on Conditional Generative Adversarial Networks (CGAN) that have been broadly implemented in computer vision research. A Wasserstein Generative Adversarial Network (WGAN) with adversarial loss and l1 perceptual loss was proposed and trained by a blur-sharp image pair dataset created in-house and evaluated by Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM). These experiments showed the effectiveness of the approach, which outperforms other competing deblurring techniques both quantitatively and qualitatively.","PeriodicalId":117227,"journal":{"name":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Motion-Blind Blur Removal for CT Images with Wasserstein Generative Adversarial Networks\",\"authors\":\"Yilin Lyu, Wei Jiang, Yaniun Lin, L. Voros, Miao Zhang, B. Mueller, B. Mychalczak, Yulin Song\",\"doi\":\"10.1109/CISP-BMEI.2018.8633203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced deblurring techniques for computed tomography (CT) images are necessary and crucial to the improvement of accuracy of patient diagnosis in radiology and patient setup and treatment response assessment in radiation oncology. Currently, medical image deblurring is a challenging technical problem due to the unpredictability of patient motion. This paper introduces a new method of computed tomography image deblurring based on Conditional Generative Adversarial Networks (CGAN) that have been broadly implemented in computer vision research. A Wasserstein Generative Adversarial Network (WGAN) with adversarial loss and l1 perceptual loss was proposed and trained by a blur-sharp image pair dataset created in-house and evaluated by Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM). These experiments showed the effectiveness of the approach, which outperforms other competing deblurring techniques both quantitatively and qualitatively.\",\"PeriodicalId\":117227,\"journal\":{\"name\":\"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2018.8633203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2018.8633203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion-Blind Blur Removal for CT Images with Wasserstein Generative Adversarial Networks
Advanced deblurring techniques for computed tomography (CT) images are necessary and crucial to the improvement of accuracy of patient diagnosis in radiology and patient setup and treatment response assessment in radiation oncology. Currently, medical image deblurring is a challenging technical problem due to the unpredictability of patient motion. This paper introduces a new method of computed tomography image deblurring based on Conditional Generative Adversarial Networks (CGAN) that have been broadly implemented in computer vision research. A Wasserstein Generative Adversarial Network (WGAN) with adversarial loss and l1 perceptual loss was proposed and trained by a blur-sharp image pair dataset created in-house and evaluated by Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM). These experiments showed the effectiveness of the approach, which outperforms other competing deblurring techniques both quantitatively and qualitatively.