{"title":"分送、多行程、多产品和车厢的车辆路线问题模型,用于确定燃料分配路线","authors":"Dinda Safitri Ramadhani, N. Masruroh, J. Waluyo","doi":"10.22146/ajse.v5i2.72461","DOIUrl":null,"url":null,"abstract":"The industrial development in Indonesia encourages companies to have high sensitivity in competing to meet consumer demands promptly by considering minimum distribution costs. One of the factors that can affect distribution costs is route determination. Determining the distribution route is the Vehicle Routing Problem (VRP). The purpose of VRP is to arrange the order of distribution routes to produce a minimum total distance. This study aims to determine the fuel distribution route at TBBM Rewulu in one delivery period to obtain the optimal distribution route and minimize the vehicle mileage. Delivery is carried out using three types of tanker trucks with heterogeneous capacities. This study uses a mathematical model of Mixed Integer Linear Programming (MILP) by considering split delivery, multi trips, multi-products, and compartments.The branch and bound method in the LINGO solver has been used to solve this problem. This model was tested on a simple case using data of 8 customers with different distances and demand shipped by truck. The results obtained indicate that no boundaries are violated, and all consumers are served. The mathematical model built is still general, so it can solve similar cases. A model can be developed for further research by adding VRP variants such as time windows and adding the product types to represent the entire existing system.","PeriodicalId":280593,"journal":{"name":"ASEAN Journal of Systems Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MODEL OF VEHICLE ROUTING PROBLEM WITH SPLIT DELIVERY, MULTI TRIPS, MULTI PRODUCTS AND COMPARTMENTS FOR DETERMINING FUEL DISTRIBUTION ROUTES\",\"authors\":\"Dinda Safitri Ramadhani, N. Masruroh, J. Waluyo\",\"doi\":\"10.22146/ajse.v5i2.72461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The industrial development in Indonesia encourages companies to have high sensitivity in competing to meet consumer demands promptly by considering minimum distribution costs. One of the factors that can affect distribution costs is route determination. Determining the distribution route is the Vehicle Routing Problem (VRP). The purpose of VRP is to arrange the order of distribution routes to produce a minimum total distance. This study aims to determine the fuel distribution route at TBBM Rewulu in one delivery period to obtain the optimal distribution route and minimize the vehicle mileage. Delivery is carried out using three types of tanker trucks with heterogeneous capacities. This study uses a mathematical model of Mixed Integer Linear Programming (MILP) by considering split delivery, multi trips, multi-products, and compartments.The branch and bound method in the LINGO solver has been used to solve this problem. This model was tested on a simple case using data of 8 customers with different distances and demand shipped by truck. The results obtained indicate that no boundaries are violated, and all consumers are served. The mathematical model built is still general, so it can solve similar cases. A model can be developed for further research by adding VRP variants such as time windows and adding the product types to represent the entire existing system.\",\"PeriodicalId\":280593,\"journal\":{\"name\":\"ASEAN Journal of Systems Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASEAN Journal of Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/ajse.v5i2.72461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASEAN Journal of Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/ajse.v5i2.72461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MODEL OF VEHICLE ROUTING PROBLEM WITH SPLIT DELIVERY, MULTI TRIPS, MULTI PRODUCTS AND COMPARTMENTS FOR DETERMINING FUEL DISTRIBUTION ROUTES
The industrial development in Indonesia encourages companies to have high sensitivity in competing to meet consumer demands promptly by considering minimum distribution costs. One of the factors that can affect distribution costs is route determination. Determining the distribution route is the Vehicle Routing Problem (VRP). The purpose of VRP is to arrange the order of distribution routes to produce a minimum total distance. This study aims to determine the fuel distribution route at TBBM Rewulu in one delivery period to obtain the optimal distribution route and minimize the vehicle mileage. Delivery is carried out using three types of tanker trucks with heterogeneous capacities. This study uses a mathematical model of Mixed Integer Linear Programming (MILP) by considering split delivery, multi trips, multi-products, and compartments.The branch and bound method in the LINGO solver has been used to solve this problem. This model was tested on a simple case using data of 8 customers with different distances and demand shipped by truck. The results obtained indicate that no boundaries are violated, and all consumers are served. The mathematical model built is still general, so it can solve similar cases. A model can be developed for further research by adding VRP variants such as time windows and adding the product types to represent the entire existing system.