微波加热输送装置中通过通信窗口的矩形谐振器激励

M. Davidovich, A. Kobetz, K. Sayapin
{"title":"微波加热输送装置中通过通信窗口的矩形谐振器激励","authors":"M. Davidovich, A. Kobetz, K. Sayapin","doi":"10.18469/1810-3189.2022.25.4.88-99","DOIUrl":null,"url":null,"abstract":"Abstract Based on the excitation theory of L.A. Vainstein obtained simple and convenient iterative relations for excitation of a resonator in the form of a rectangular parallelepiped with a dielectric layer through several coupling windows in its walls. Theexpansion of the field in terms of the complete system of solenoidal functions of a rectangular resonator is used. Solenoidality is due to the fact that the electric fields of excitation in the openings of rectangular waveguides on the resonator walls, fed through coaxial-waveguide transitions, are tangent to the boundaries of the heated dielectric layer. Simple formulas for expansion coefficients and calculation of fields are obtained. It is convenient to solve the obtained implicit formulas iteratively; in this case, it is possible to take into account both a linear dielectric and a nonlinear dielectric, the permittivity of which depends on the square of the electric field. The algorithm is implemented to simulate a conveyor installation of microwave heating. It is possible to modify the algorithm by introducing potential basic subsystems of functions for the case of modeling complex dielectric inclusions. The results are suitable for modeling other nonlinear inclusions, as well as in problems when using volumetric given sources instead of surface ones. For given electric fields in the coupling windows, the power entering the resonator is calculated on the basis of the Poynting vector.","PeriodicalId":129469,"journal":{"name":"Physics of Wave Processes and Radio Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excitation of a rectangular resonator through communication windows in the conveyor installation of microwave heating\",\"authors\":\"M. Davidovich, A. Kobetz, K. Sayapin\",\"doi\":\"10.18469/1810-3189.2022.25.4.88-99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Based on the excitation theory of L.A. Vainstein obtained simple and convenient iterative relations for excitation of a resonator in the form of a rectangular parallelepiped with a dielectric layer through several coupling windows in its walls. Theexpansion of the field in terms of the complete system of solenoidal functions of a rectangular resonator is used. Solenoidality is due to the fact that the electric fields of excitation in the openings of rectangular waveguides on the resonator walls, fed through coaxial-waveguide transitions, are tangent to the boundaries of the heated dielectric layer. Simple formulas for expansion coefficients and calculation of fields are obtained. It is convenient to solve the obtained implicit formulas iteratively; in this case, it is possible to take into account both a linear dielectric and a nonlinear dielectric, the permittivity of which depends on the square of the electric field. The algorithm is implemented to simulate a conveyor installation of microwave heating. It is possible to modify the algorithm by introducing potential basic subsystems of functions for the case of modeling complex dielectric inclusions. The results are suitable for modeling other nonlinear inclusions, as well as in problems when using volumetric given sources instead of surface ones. For given electric fields in the coupling windows, the power entering the resonator is calculated on the basis of the Poynting vector.\",\"PeriodicalId\":129469,\"journal\":{\"name\":\"Physics of Wave Processes and Radio Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Wave Processes and Radio Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18469/1810-3189.2022.25.4.88-99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Wave Processes and Radio Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18469/1810-3189.2022.25.4.88-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于l.a Vainstein的激励理论,得到了带介电层的矩形平行六面体谐振腔通过其壁上多个耦合窗口的简单方便的激励迭代关系。用矩形谐振器的完整螺线函数系统来展开场。螺线性是由于谐振腔壁上的矩形波导开口中的激发电场,通过同轴波导跃迁馈电,与加热的介电层的边界相切。给出了扩展系数和场计算的简单公式。得到的隐式公式迭代求解方便;在这种情况下,可以同时考虑线性电介质和非线性电介质,其介电常数取决于电场的平方。以微波加热输送机装置为例,实现了该算法的仿真。在模拟复杂介质内含物的情况下,可以通过引入潜在的基本函数子系统来修改算法。该结果适用于其他非线性夹杂物的建模,也适用于使用体积给定源代替表面源的问题。对于耦合窗口内给定的电场,根据波印廷矢量计算进入谐振腔的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Excitation of a rectangular resonator through communication windows in the conveyor installation of microwave heating
Abstract Based on the excitation theory of L.A. Vainstein obtained simple and convenient iterative relations for excitation of a resonator in the form of a rectangular parallelepiped with a dielectric layer through several coupling windows in its walls. Theexpansion of the field in terms of the complete system of solenoidal functions of a rectangular resonator is used. Solenoidality is due to the fact that the electric fields of excitation in the openings of rectangular waveguides on the resonator walls, fed through coaxial-waveguide transitions, are tangent to the boundaries of the heated dielectric layer. Simple formulas for expansion coefficients and calculation of fields are obtained. It is convenient to solve the obtained implicit formulas iteratively; in this case, it is possible to take into account both a linear dielectric and a nonlinear dielectric, the permittivity of which depends on the square of the electric field. The algorithm is implemented to simulate a conveyor installation of microwave heating. It is possible to modify the algorithm by introducing potential basic subsystems of functions for the case of modeling complex dielectric inclusions. The results are suitable for modeling other nonlinear inclusions, as well as in problems when using volumetric given sources instead of surface ones. For given electric fields in the coupling windows, the power entering the resonator is calculated on the basis of the Poynting vector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信