脑MRI体积的纹理三维多尺度分析

Harry Hatzakis, S. Roberts, I. Matalas
{"title":"脑MRI体积的纹理三维多尺度分析","authors":"Harry Hatzakis, S. Roberts, I. Matalas","doi":"10.5281/ZENODO.36169","DOIUrl":null,"url":null,"abstract":"We describe a method for textural feature extraction of MRI volumes of the brain and, based upon those features, a method for classification and assessment of the anatomical malformations of the brain, due to Alzheimer's Disease (AD). In our research, we make the hypothesis that there is enough detectable textural evidence from a 3D analysis of MR images of the brain to detect and identify the earliest structural changes of AD. To uniquely characterise structural malformations we construct a database of statistical information for 3D textures at different scales, using wavelet operators. The major goal at this stage of our research is to explore the inherent constraints imposed by the structure of the texture and its symbolic description. Our representation benefits from a unique method of parameter reduction, which gives an unambiguous description of the textures of the brain in 3D. One of the key attributes of this model is that, in the case of conflicting statements, it generates a low confidence estimate, thus allowing a local measure of reliability.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Textural 3-dimensional multiscale analysis of MRI volumes of the brain\",\"authors\":\"Harry Hatzakis, S. Roberts, I. Matalas\",\"doi\":\"10.5281/ZENODO.36169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a method for textural feature extraction of MRI volumes of the brain and, based upon those features, a method for classification and assessment of the anatomical malformations of the brain, due to Alzheimer's Disease (AD). In our research, we make the hypothesis that there is enough detectable textural evidence from a 3D analysis of MR images of the brain to detect and identify the earliest structural changes of AD. To uniquely characterise structural malformations we construct a database of statistical information for 3D textures at different scales, using wavelet operators. The major goal at this stage of our research is to explore the inherent constraints imposed by the structure of the texture and its symbolic description. Our representation benefits from a unique method of parameter reduction, which gives an unambiguous description of the textures of the brain in 3D. One of the key attributes of this model is that, in the case of conflicting statements, it generates a low confidence estimate, thus allowing a local measure of reliability.\",\"PeriodicalId\":282153,\"journal\":{\"name\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 8th European Signal Processing Conference (EUSIPCO 1996)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.36169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了一种大脑MRI体积的纹理特征提取方法,并基于这些特征,分类和评估大脑解剖畸形的方法,由于阿尔茨海默病(AD)。在我们的研究中,我们假设从大脑MR图像的3D分析中有足够的可检测的纹理证据来检测和识别AD的早期结构变化。为了独特地表征结构畸形,我们使用小波算子构建了不同尺度的3D纹理统计信息数据库。本阶段研究的主要目标是探索纹理结构及其符号描述所施加的内在约束。我们的表现得益于一种独特的参数缩减方法,该方法可以在3D中对大脑的纹理进行明确的描述。该模型的关键属性之一是,在冲突陈述的情况下,它生成低置信度估计,从而允许对可靠性进行局部度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Textural 3-dimensional multiscale analysis of MRI volumes of the brain
We describe a method for textural feature extraction of MRI volumes of the brain and, based upon those features, a method for classification and assessment of the anatomical malformations of the brain, due to Alzheimer's Disease (AD). In our research, we make the hypothesis that there is enough detectable textural evidence from a 3D analysis of MR images of the brain to detect and identify the earliest structural changes of AD. To uniquely characterise structural malformations we construct a database of statistical information for 3D textures at different scales, using wavelet operators. The major goal at this stage of our research is to explore the inherent constraints imposed by the structure of the texture and its symbolic description. Our representation benefits from a unique method of parameter reduction, which gives an unambiguous description of the textures of the brain in 3D. One of the key attributes of this model is that, in the case of conflicting statements, it generates a low confidence estimate, thus allowing a local measure of reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信