稳定混合有限元的推广

A. Gillette, C. Bajaj
{"title":"稳定混合有限元的推广","authors":"A. Gillette, C. Bajaj","doi":"10.1145/1839778.1839785","DOIUrl":null,"url":null,"abstract":"Mixed finite element methods solve a PDE involving two or more variables. In typical problems from electromagnetics and electrodiffusion, the degrees of freedom associated to the different variables are stored on both primal and dual domain meshes and a discrete Hodge star is used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the model and numerical stability of a finite element method. We also show how to define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods.","PeriodicalId":216067,"journal":{"name":"Symposium on Solid and Physical Modeling","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A generalization for stable mixed finite elements\",\"authors\":\"A. Gillette, C. Bajaj\",\"doi\":\"10.1145/1839778.1839785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed finite element methods solve a PDE involving two or more variables. In typical problems from electromagnetics and electrodiffusion, the degrees of freedom associated to the different variables are stored on both primal and dual domain meshes and a discrete Hodge star is used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the model and numerical stability of a finite element method. We also show how to define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods.\",\"PeriodicalId\":216067,\"journal\":{\"name\":\"Symposium on Solid and Physical Modeling\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Solid and Physical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1839778.1839785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Solid and Physical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1839778.1839785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

混合有限元法求解包含两个或多个变量的偏微分方程。在典型的电磁学和电扩散问题中,与不同变量相关的自由度存储在原域网格和对偶域网格中,并使用离散霍奇星在网格之间传递信息。通过分析和算例表明,离散霍奇星的选择对有限元方法的模型和数值稳定性至关重要。我们还展示了如何在双网格上定义插值函数和离散霍奇星,这可以用来创建以前未考虑的混合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization for stable mixed finite elements
Mixed finite element methods solve a PDE involving two or more variables. In typical problems from electromagnetics and electrodiffusion, the degrees of freedom associated to the different variables are stored on both primal and dual domain meshes and a discrete Hodge star is used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the model and numerical stability of a finite element method. We also show how to define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信