序列预测的综合下界

N. D. Vanli, M. O. Sayin, S. Ergüt, S. Kozat
{"title":"序列预测的综合下界","authors":"N. D. Vanli, M. O. Sayin, S. Ergüt, S. Kozat","doi":"10.5281/ZENODO.44015","DOIUrl":null,"url":null,"abstract":"We study the problem of sequential prediction of real-valued sequences under the squared error loss function. While refraining from any statistical and structural assumptions on the underlying sequence, we introduce a competitive approach to this problem and compare the performance of a sequential algorithm with respect to the large and continuous class of parametric predictors. We define the performance difference between a sequential algorithm and the best parametric predictor as “regret”, and introduce a guaranteed worst-case lower bounds to this relative performance measure. In particular, we prove that for any sequential algorithm, there always exists a sequence for which this regret is lower bounded by zero. We then extend this result by showing that the prediction problem can be transformed into a parameter estimation problem if the class of parametric predictors satisfy a certain property, and provide a comprehensive lower bound to this case.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comprehensive lower bounds on sequential prediction\",\"authors\":\"N. D. Vanli, M. O. Sayin, S. Ergüt, S. Kozat\",\"doi\":\"10.5281/ZENODO.44015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of sequential prediction of real-valued sequences under the squared error loss function. While refraining from any statistical and structural assumptions on the underlying sequence, we introduce a competitive approach to this problem and compare the performance of a sequential algorithm with respect to the large and continuous class of parametric predictors. We define the performance difference between a sequential algorithm and the best parametric predictor as “regret”, and introduce a guaranteed worst-case lower bounds to this relative performance measure. In particular, we prove that for any sequential algorithm, there always exists a sequence for which this regret is lower bounded by zero. We then extend this result by showing that the prediction problem can be transformed into a parameter estimation problem if the class of parametric predictors satisfy a certain property, and provide a comprehensive lower bound to this case.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.44015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.44015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了误差平方损失函数下实值序列的序列预测问题。在避免对潜在序列进行任何统计和结构假设的同时,我们引入了一种竞争方法来解决这个问题,并比较了序列算法相对于大量连续的参数预测器的性能。我们将顺序算法和最佳参数预测器之间的性能差异定义为“遗憾”,并为这种相对性能度量引入保证的最坏情况下界。特别地,我们证明了对于任何序列算法,总存在一个序列,它的遗憾下界为零。然后,我们扩展了这一结果,证明如果参数预测器类满足一定的性质,则预测问题可以转化为参数估计问题,并给出了这种情况的一个综合下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive lower bounds on sequential prediction
We study the problem of sequential prediction of real-valued sequences under the squared error loss function. While refraining from any statistical and structural assumptions on the underlying sequence, we introduce a competitive approach to this problem and compare the performance of a sequential algorithm with respect to the large and continuous class of parametric predictors. We define the performance difference between a sequential algorithm and the best parametric predictor as “regret”, and introduce a guaranteed worst-case lower bounds to this relative performance measure. In particular, we prove that for any sequential algorithm, there always exists a sequence for which this regret is lower bounded by zero. We then extend this result by showing that the prediction problem can be transformed into a parameter estimation problem if the class of parametric predictors satisfy a certain property, and provide a comprehensive lower bound to this case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信