Morten Silcowitz-Hansen, Sarah Niebe, Kenny Erleben
{"title":"交互刚体仿真中接触力问题Fischer函数重表述的非光滑牛顿法","authors":"Morten Silcowitz-Hansen, Sarah Niebe, Kenny Erleben","doi":"10.2312/PE/vriphys/vriphys09/105-114","DOIUrl":null,"url":null,"abstract":"EUROGRAPHICS D L IGITAL IBRARY www.eg.org diglib.eg.org Abstract In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating each other. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifacts such as viscous or damped contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer– Newton method shows improved qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer– Newton method.","PeriodicalId":446363,"journal":{"name":"Workshop on Virtual Reality Interactions and Physical Simulations","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation\",\"authors\":\"Morten Silcowitz-Hansen, Sarah Niebe, Kenny Erleben\",\"doi\":\"10.2312/PE/vriphys/vriphys09/105-114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EUROGRAPHICS D L IGITAL IBRARY www.eg.org diglib.eg.org Abstract In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating each other. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifacts such as viscous or damped contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer– Newton method shows improved qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer– Newton method.\",\"PeriodicalId\":446363,\"journal\":{\"name\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Virtual Reality Interactions and Physical Simulations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/PE/vriphys/vriphys09/105-114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Virtual Reality Interactions and Physical Simulations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/PE/vriphys/vriphys09/105-114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonsmooth Newton Method for Fischer Function Reformulation of Contact Force Problems for Interactive Rigid Body Simulation
EUROGRAPHICS D L IGITAL IBRARY www.eg.org diglib.eg.org Abstract In interactive physical simulation, contact forces are applied to prevent rigid bodies from penetrating each other. Accurate contact force determination is a computationally hard problem. Thus, in practice one trades accuracy for performance. The result is visual artifacts such as viscous or damped contact response. In this paper, we present a new approach to contact force determination. We reformulate the contact force problem as a nonlinear root search problem, using a Fischer function. We solve this problem using a generalized Newton method. Our new Fischer– Newton method shows improved qualities for specific configurations where the most widespread alternative, the Projected Gauss-Seidel method, fails. Experiments show superior convergence properties of the exact Fischer– Newton method.