Haizhi Yang, Tengyun Wang, Xiaoli Tang, Qianyu Li, Yueyue Shi, Siyu Jiang, Han Yu, Hengjie Song
{"title":"网络广告中无偏差联合点击率预测和市场价格建模的多任务学习","authors":"Haizhi Yang, Tengyun Wang, Xiaoli Tang, Qianyu Li, Yueyue Shi, Siyu Jiang, Han Yu, Hengjie Song","doi":"10.1145/3459637.3482373","DOIUrl":null,"url":null,"abstract":"The rapid rise of real-time bidding-based online advertising has brought significant economic benefits and attracted extensive research attention. From the perspective of an advertiser, it is crucial to perform accurate utility estimation and cost estimation for each individual auction in order to achieve cost-effective advertising. These problems are known as the click through rate (CTR) prediction task and the market price modeling task, respectively. However, existing approaches treat CTR prediction and market price modeling as two independent tasks to be optimized without regard to each other, thus resulting in suboptimal performance. Moreover, they do not make full use of unlabeled data from the losing bids during estimations, which makes them suffer from the sample selection bias issue. To address these limitations, we propose Multi-task Advertising Estimator (MTAE), an end-to-end joint optimization framework which performs both CTR prediction and market price modeling simultaneously. Through multi-task learning, both estimation tasks can take advantage of knowledge transfer to achieve improved feature representation and generalization abilities. In addition, we leverage the abundant bid price signals in the full-volume bid request data and introduce an auxiliary task of predicting the winning probability into the framework for unbiased learning. Through extensive experiments on two large-scale real-world public datasets, we demonstrate that our proposed approach has achieved significant improvements over the state-of-the-art models under various performance metrics.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multi-task Learning for Bias-Free Joint CTR Prediction and Market Price Modeling in Online Advertising\",\"authors\":\"Haizhi Yang, Tengyun Wang, Xiaoli Tang, Qianyu Li, Yueyue Shi, Siyu Jiang, Han Yu, Hengjie Song\",\"doi\":\"10.1145/3459637.3482373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid rise of real-time bidding-based online advertising has brought significant economic benefits and attracted extensive research attention. From the perspective of an advertiser, it is crucial to perform accurate utility estimation and cost estimation for each individual auction in order to achieve cost-effective advertising. These problems are known as the click through rate (CTR) prediction task and the market price modeling task, respectively. However, existing approaches treat CTR prediction and market price modeling as two independent tasks to be optimized without regard to each other, thus resulting in suboptimal performance. Moreover, they do not make full use of unlabeled data from the losing bids during estimations, which makes them suffer from the sample selection bias issue. To address these limitations, we propose Multi-task Advertising Estimator (MTAE), an end-to-end joint optimization framework which performs both CTR prediction and market price modeling simultaneously. Through multi-task learning, both estimation tasks can take advantage of knowledge transfer to achieve improved feature representation and generalization abilities. In addition, we leverage the abundant bid price signals in the full-volume bid request data and introduce an auxiliary task of predicting the winning probability into the framework for unbiased learning. Through extensive experiments on two large-scale real-world public datasets, we demonstrate that our proposed approach has achieved significant improvements over the state-of-the-art models under various performance metrics.\",\"PeriodicalId\":405296,\"journal\":{\"name\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM International Conference on Information & Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3459637.3482373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-task Learning for Bias-Free Joint CTR Prediction and Market Price Modeling in Online Advertising
The rapid rise of real-time bidding-based online advertising has brought significant economic benefits and attracted extensive research attention. From the perspective of an advertiser, it is crucial to perform accurate utility estimation and cost estimation for each individual auction in order to achieve cost-effective advertising. These problems are known as the click through rate (CTR) prediction task and the market price modeling task, respectively. However, existing approaches treat CTR prediction and market price modeling as two independent tasks to be optimized without regard to each other, thus resulting in suboptimal performance. Moreover, they do not make full use of unlabeled data from the losing bids during estimations, which makes them suffer from the sample selection bias issue. To address these limitations, we propose Multi-task Advertising Estimator (MTAE), an end-to-end joint optimization framework which performs both CTR prediction and market price modeling simultaneously. Through multi-task learning, both estimation tasks can take advantage of knowledge transfer to achieve improved feature representation and generalization abilities. In addition, we leverage the abundant bid price signals in the full-volume bid request data and introduce an auxiliary task of predicting the winning probability into the framework for unbiased learning. Through extensive experiments on two large-scale real-world public datasets, we demonstrate that our proposed approach has achieved significant improvements over the state-of-the-art models under various performance metrics.