具有功能不确定性的线性随机系统的鲁棒概率控制

R. Herzallah
{"title":"具有功能不确定性的线性随机系统的鲁棒概率控制","authors":"R. Herzallah","doi":"10.1109/ICICIP47338.2019.9012175","DOIUrl":null,"url":null,"abstract":"This paper proposes a cautious randomised controller that is derived such that it minimises the discrepancy between the joint distribution of the system dynamics and a predefined ideal joint probability density function (pdf). This distance is known as the Kullback-Leibler divergence. The developed methodology is demonstrated on a class of uncertain stochastic systems that can be characterised by Gaussian density functions. The density function of the dynamics of the system is assumed to be unknown, therefore estimated using the generalised linear neural network models. The analytic solution of the randomised cautious controller is obtained by evaluating the multi-integrals in the Kulback-Leibler divergence cost function. The derived cautious controller minimises to high accuracy the expected value of the Kullback-Leibler divergence taking into consideration the covariance of the dynamics estimated probability density functions.","PeriodicalId":431872,"journal":{"name":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Probabilistic Control for Linear Stochastic Systems with Functional Uncertainty\",\"authors\":\"R. Herzallah\",\"doi\":\"10.1109/ICICIP47338.2019.9012175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a cautious randomised controller that is derived such that it minimises the discrepancy between the joint distribution of the system dynamics and a predefined ideal joint probability density function (pdf). This distance is known as the Kullback-Leibler divergence. The developed methodology is demonstrated on a class of uncertain stochastic systems that can be characterised by Gaussian density functions. The density function of the dynamics of the system is assumed to be unknown, therefore estimated using the generalised linear neural network models. The analytic solution of the randomised cautious controller is obtained by evaluating the multi-integrals in the Kulback-Leibler divergence cost function. The derived cautious controller minimises to high accuracy the expected value of the Kullback-Leibler divergence taking into consideration the covariance of the dynamics estimated probability density functions.\",\"PeriodicalId\":431872,\"journal\":{\"name\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP47338.2019.9012175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP47338.2019.9012175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种谨慎随机化控制器,该控制器的推导使系统动力学的联合分布与预定义的理想联合概率密度函数之间的差异最小化。这个距离被称为Kullback-Leibler散度。在一类可以用高斯密度函数表征的不确定随机系统上证明了所开发的方法。假设系统动力学的密度函数是未知的,因此使用广义线性神经网络模型进行估计。通过计算Kulback-Leibler散度代价函数中的多重积分,得到了随机谨慎控制器的解析解。考虑到动力学估计概率密度函数的协方差,推导出的谨慎控制器将Kullback-Leibler散度的期望值最小化到高精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Probabilistic Control for Linear Stochastic Systems with Functional Uncertainty
This paper proposes a cautious randomised controller that is derived such that it minimises the discrepancy between the joint distribution of the system dynamics and a predefined ideal joint probability density function (pdf). This distance is known as the Kullback-Leibler divergence. The developed methodology is demonstrated on a class of uncertain stochastic systems that can be characterised by Gaussian density functions. The density function of the dynamics of the system is assumed to be unknown, therefore estimated using the generalised linear neural network models. The analytic solution of the randomised cautious controller is obtained by evaluating the multi-integrals in the Kulback-Leibler divergence cost function. The derived cautious controller minimises to high accuracy the expected value of the Kullback-Leibler divergence taking into consideration the covariance of the dynamics estimated probability density functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信