人脸认证的会话间变异性建模与联合因子分析

R. Wallace, Mitchell McLaren, C. McCool, S. Marcel
{"title":"人脸认证的会话间变异性建模与联合因子分析","authors":"R. Wallace, Mitchell McLaren, C. McCool, S. Marcel","doi":"10.1109/IJCB.2011.6117599","DOIUrl":null,"url":null,"abstract":"This paper applies inter-session variability modelling and joint factor analysis to face authentication using Gaussian mixture models. These techniques, originally developed for speaker authentication, aim to explicitly model and remove detrimental within-client (inter-session) variation from client models. We apply the techniques to face authentication on the publicly-available BANCA, SCface and MOBIO databases. We propose a face authentication protocol for the challenging SCface database, and provide the first results on the MOBIO still face protocol. The techniques provide relative reductions in error rate of up to 44%, using only limited training data. On the BANCA database, our results represent a 31% reduction in error rate when benchmarked against previous work.","PeriodicalId":103913,"journal":{"name":"2011 International Joint Conference on Biometrics (IJCB)","volume":"73 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Inter-session variability modelling and joint factor analysis for face authentication\",\"authors\":\"R. Wallace, Mitchell McLaren, C. McCool, S. Marcel\",\"doi\":\"10.1109/IJCB.2011.6117599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper applies inter-session variability modelling and joint factor analysis to face authentication using Gaussian mixture models. These techniques, originally developed for speaker authentication, aim to explicitly model and remove detrimental within-client (inter-session) variation from client models. We apply the techniques to face authentication on the publicly-available BANCA, SCface and MOBIO databases. We propose a face authentication protocol for the challenging SCface database, and provide the first results on the MOBIO still face protocol. The techniques provide relative reductions in error rate of up to 44%, using only limited training data. On the BANCA database, our results represent a 31% reduction in error rate when benchmarked against previous work.\",\"PeriodicalId\":103913,\"journal\":{\"name\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"volume\":\"73 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCB.2011.6117599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB.2011.6117599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

本文将会话间变异性建模和联合因子分析应用于高斯混合模型的人脸认证。这些技术最初是为说话人身份验证而开发的,旨在明确地建模并消除客户端模型中有害的客户端内部(会话间)变化。我们将这些技术应用于公开可用的BANCA、SCface和MOBIO数据库上的人脸认证。我们提出了一种具有挑战性的SCface数据库的人脸认证协议,并提供了MOBIO仍然人脸协议的第一个结果。这些技术只使用有限的训练数据,错误率相对降低了44%。在BANCA数据库上,我们的结果表明,与以前的工作相比,错误率降低了31%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-session variability modelling and joint factor analysis for face authentication
This paper applies inter-session variability modelling and joint factor analysis to face authentication using Gaussian mixture models. These techniques, originally developed for speaker authentication, aim to explicitly model and remove detrimental within-client (inter-session) variation from client models. We apply the techniques to face authentication on the publicly-available BANCA, SCface and MOBIO databases. We propose a face authentication protocol for the challenging SCface database, and provide the first results on the MOBIO still face protocol. The techniques provide relative reductions in error rate of up to 44%, using only limited training data. On the BANCA database, our results represent a 31% reduction in error rate when benchmarked against previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信