一种基于聚合热核映射的鲁棒聚类算法

Hao Huang, Shinjae Yoo, Hong Qin, Dantong Yu
{"title":"一种基于聚合热核映射的鲁棒聚类算法","authors":"Hao Huang, Shinjae Yoo, Hong Qin, Dantong Yu","doi":"10.1109/ICDM.2011.15","DOIUrl":null,"url":null,"abstract":"Current spectral clustering algorithms suffer from both sensitivity to scaling parameter selection in similarity matrix construction, and data perturbation. This paper aims to improve robustness in clustering algorithms and combat these two limitations based on heat kernel theory. Heat kernel can statistically depict traces of random walk, so it has an intrinsic connection with diffusion distance, with which we can ensure robustness during any clustering process. By integrating heat distributed along time scale, we propose a novel method called Aggregated Heat Kernel (AHK) to measure the distance between each point pair in their eigen space. Using AHK and Laplace-Beltrami Normalization (LBN) we are able to apply an advanced noise-resisting robust spectral mapping to original dataset. Moreover it offers stability on scaling parameter tuning. Experimental results show that, compared to other popular spectral clustering methods, our algorithm can achieve robust clustering results on both synthetic and UCI real datasets.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A Robust Clustering Algorithm Based on Aggregated Heat Kernel Mapping\",\"authors\":\"Hao Huang, Shinjae Yoo, Hong Qin, Dantong Yu\",\"doi\":\"10.1109/ICDM.2011.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current spectral clustering algorithms suffer from both sensitivity to scaling parameter selection in similarity matrix construction, and data perturbation. This paper aims to improve robustness in clustering algorithms and combat these two limitations based on heat kernel theory. Heat kernel can statistically depict traces of random walk, so it has an intrinsic connection with diffusion distance, with which we can ensure robustness during any clustering process. By integrating heat distributed along time scale, we propose a novel method called Aggregated Heat Kernel (AHK) to measure the distance between each point pair in their eigen space. Using AHK and Laplace-Beltrami Normalization (LBN) we are able to apply an advanced noise-resisting robust spectral mapping to original dataset. Moreover it offers stability on scaling parameter tuning. Experimental results show that, compared to other popular spectral clustering methods, our algorithm can achieve robust clustering results on both synthetic and UCI real datasets.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

现有的光谱聚类算法存在着对相似矩阵构造中尺度参数选择的敏感性和数据摄动的问题。本文旨在提高聚类算法的鲁棒性,并基于热核理论克服这两个限制。热核可以统计地描述随机游走的轨迹,因此它与扩散距离有内在的联系,可以保证在任何聚类过程中的鲁棒性。通过对沿时间尺度分布的热量进行积分,我们提出了一种新的方法——聚集热核(AHK)来测量每个点对在其特征空间中的距离。利用AHK和拉普拉斯-贝尔特拉米归一化(LBN),我们能够对原始数据集应用一种先进的抗噪声鲁棒谱映射。此外,它还提供了缩放参数调优的稳定性。实验结果表明,与其他流行的光谱聚类方法相比,本文算法在合成和UCI真实数据集上都能获得鲁棒的聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Clustering Algorithm Based on Aggregated Heat Kernel Mapping
Current spectral clustering algorithms suffer from both sensitivity to scaling parameter selection in similarity matrix construction, and data perturbation. This paper aims to improve robustness in clustering algorithms and combat these two limitations based on heat kernel theory. Heat kernel can statistically depict traces of random walk, so it has an intrinsic connection with diffusion distance, with which we can ensure robustness during any clustering process. By integrating heat distributed along time scale, we propose a novel method called Aggregated Heat Kernel (AHK) to measure the distance between each point pair in their eigen space. Using AHK and Laplace-Beltrami Normalization (LBN) we are able to apply an advanced noise-resisting robust spectral mapping to original dataset. Moreover it offers stability on scaling parameter tuning. Experimental results show that, compared to other popular spectral clustering methods, our algorithm can achieve robust clustering results on both synthetic and UCI real datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信