{"title":"优化网络物理系统调度程序的预期时间效用","authors":"T. Tidwell, R. Glaubius, C. Gill, W. Smart","doi":"10.1109/RTSS.2010.28","DOIUrl":null,"url":null,"abstract":"Classical scheduling abstractions such as deadlines and priorities do not readily capture the complex timing semantics found in many real-time cyber-physical systems. Time utility functions provide a necessarily richer description of timing semantics, but designing utility-aware scheduling policies using them is an open research problem. In particular, scheduling design that optimizes expected utility accrual is needed for real-time cyber-physical domains. In this paper we design scheduling policies that optimize expected utility accrual for cyber-physical systems with periodic, non-preemptable tasks that run with stochastic duration. These policies are derived by solving a Markov Decision Process formulation of the scheduling problem. We use this formulation to demonstrate that our technique improves on existing heuristic utility accrual scheduling policies.","PeriodicalId":202891,"journal":{"name":"2010 31st IEEE Real-Time Systems Symposium","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Optimizing Expected Time Utility in Cyber-Physical Systems Schedulers\",\"authors\":\"T. Tidwell, R. Glaubius, C. Gill, W. Smart\",\"doi\":\"10.1109/RTSS.2010.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classical scheduling abstractions such as deadlines and priorities do not readily capture the complex timing semantics found in many real-time cyber-physical systems. Time utility functions provide a necessarily richer description of timing semantics, but designing utility-aware scheduling policies using them is an open research problem. In particular, scheduling design that optimizes expected utility accrual is needed for real-time cyber-physical domains. In this paper we design scheduling policies that optimize expected utility accrual for cyber-physical systems with periodic, non-preemptable tasks that run with stochastic duration. These policies are derived by solving a Markov Decision Process formulation of the scheduling problem. We use this formulation to demonstrate that our technique improves on existing heuristic utility accrual scheduling policies.\",\"PeriodicalId\":202891,\"journal\":{\"name\":\"2010 31st IEEE Real-Time Systems Symposium\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 31st IEEE Real-Time Systems Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2010.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 31st IEEE Real-Time Systems Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Expected Time Utility in Cyber-Physical Systems Schedulers
Classical scheduling abstractions such as deadlines and priorities do not readily capture the complex timing semantics found in many real-time cyber-physical systems. Time utility functions provide a necessarily richer description of timing semantics, but designing utility-aware scheduling policies using them is an open research problem. In particular, scheduling design that optimizes expected utility accrual is needed for real-time cyber-physical domains. In this paper we design scheduling policies that optimize expected utility accrual for cyber-physical systems with periodic, non-preemptable tasks that run with stochastic duration. These policies are derived by solving a Markov Decision Process formulation of the scheduling problem. We use this formulation to demonstrate that our technique improves on existing heuristic utility accrual scheduling policies.