通过c树分解求解几何约束

X. Gao, Gui-Fang Zhang
{"title":"通过c树分解求解几何约束","authors":"X. Gao, Gui-Fang Zhang","doi":"10.1145/781606.781617","DOIUrl":null,"url":null,"abstract":"This paper has two parts. First, we propose a method which can be used to decompose a geometric constraint graph into a c-tree. With this decomposition, solving for a well-constrained problem is reduced to the solving for smaller rigid bodies if possible. Second, we give the analytical solutions to one of the basic merge patterns used to solve a c-tree: the 3A3D general Stewart platform, which is to determine the position of a rigid body relative to another rigid body when we know three angular and three distance constraints between the two rigid bodies.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Geometric constraint solving via C-tree decomposition\",\"authors\":\"X. Gao, Gui-Fang Zhang\",\"doi\":\"10.1145/781606.781617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper has two parts. First, we propose a method which can be used to decompose a geometric constraint graph into a c-tree. With this decomposition, solving for a well-constrained problem is reduced to the solving for smaller rigid bodies if possible. Second, we give the analytical solutions to one of the basic merge patterns used to solve a c-tree: the 3A3D general Stewart platform, which is to determine the position of a rigid body relative to another rigid body when we know three angular and three distance constraints between the two rigid bodies.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/781606.781617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/781606.781617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文分为两部分。首先,我们提出了一种将几何约束图分解为c树的方法。通过这种分解,如果可能的话,求解约束良好的问题可以简化为求解较小的刚体。其次,我们给出了用于求解c树的基本合并模式之一:3A3D通用Stewart平台的解析解,该平台是在已知两个刚体之间的三个角度和三个距离约束的情况下确定刚体相对于另一个刚体的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric constraint solving via C-tree decomposition
This paper has two parts. First, we propose a method which can be used to decompose a geometric constraint graph into a c-tree. With this decomposition, solving for a well-constrained problem is reduced to the solving for smaller rigid bodies if possible. Second, we give the analytical solutions to one of the basic merge patterns used to solve a c-tree: the 3A3D general Stewart platform, which is to determine the position of a rigid body relative to another rigid body when we know three angular and three distance constraints between the two rigid bodies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信