语音识别中的模糊隐马尔科夫模型新方法

M. Tarihi, M. Taheri, H. Bababeyk
{"title":"语音识别中的模糊隐马尔科夫模型新方法","authors":"M. Tarihi, M. Taheri, H. Bababeyk","doi":"10.1109/ICET.2005.1558851","DOIUrl":null,"url":null,"abstract":"Thispaperproposes a Ftuzzi approach tothe Hidden Markov Model(HMM). This method called the fizzy HMMfbrspeech andspeaker recognition asan application offizzy expectation maximizing algorithm inHMM.Thefitzzy HMM algorithm isregar-ded asan application of'the,fizzy expectation-maximization (EM)algorithm totheBatum-Welch algorithm inthe HMM. TheTexas Instruments p4uised speech and speaker recognition experiments andshowbetter results fbr.fiuzzv HMMscompared withconventional HMMs.Equation andhowestimation ofdiscrete and continuious HMM parameters on basedthistwo algorithm isexplained andperfbrmance oftwospeech recognition methodtbronehundred issurveved. This papershowbetter results forthefiuzzy HMVM, compared with theconventional HMM.","PeriodicalId":222828,"journal":{"name":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new method for fuzzy hidden Markov models in speech recognition\",\"authors\":\"M. Tarihi, M. Taheri, H. Bababeyk\",\"doi\":\"10.1109/ICET.2005.1558851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thispaperproposes a Ftuzzi approach tothe Hidden Markov Model(HMM). This method called the fizzy HMMfbrspeech andspeaker recognition asan application offizzy expectation maximizing algorithm inHMM.Thefitzzy HMM algorithm isregar-ded asan application of'the,fizzy expectation-maximization (EM)algorithm totheBatum-Welch algorithm inthe HMM. TheTexas Instruments p4uised speech and speaker recognition experiments andshowbetter results fbr.fiuzzv HMMscompared withconventional HMMs.Equation andhowestimation ofdiscrete and continuious HMM parameters on basedthistwo algorithm isexplained andperfbrmance oftwospeech recognition methodtbronehundred issurveved. This papershowbetter results forthefiuzzy HMVM, compared with theconventional HMM.\",\"PeriodicalId\":222828,\"journal\":{\"name\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2005.1558851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2005.1558851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文针对隐马尔可夫模型(HMM)提出了一种 Ftuzzi 方法。这种方法被称为 "模糊 HMM",它是期望最大化算法在 HMM 中的应用,用于语音和说话人识别。本文解释了基于这两种算法的离散和连续 HMM 参数估计方程和方法,并对两种语音识别方法的性能进行了分析。与传统的 HMM 相比,本文展示了模糊 HMVM 更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for fuzzy hidden Markov models in speech recognition
Thispaperproposes a Ftuzzi approach tothe Hidden Markov Model(HMM). This method called the fizzy HMMfbrspeech andspeaker recognition asan application offizzy expectation maximizing algorithm inHMM.Thefitzzy HMM algorithm isregar-ded asan application of'the,fizzy expectation-maximization (EM)algorithm totheBatum-Welch algorithm inthe HMM. TheTexas Instruments p4uised speech and speaker recognition experiments andshowbetter results fbr.fiuzzv HMMscompared withconventional HMMs.Equation andhowestimation ofdiscrete and continuious HMM parameters on basedthistwo algorithm isexplained andperfbrmance oftwospeech recognition methodtbronehundred issurveved. This papershowbetter results forthefiuzzy HMVM, compared with theconventional HMM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信