制造工艺对热固性复合材料尺寸精度的影响

Qi Zhu, P. Geubelle
{"title":"制造工艺对热固性复合材料尺寸精度的影响","authors":"Qi Zhu, P. Geubelle","doi":"10.1115/imece2000-1490","DOIUrl":null,"url":null,"abstract":"\n The warpage of thermoset composite structures during the manufacturing process is a direct consequence of residual stress development. The capability to predict residual stresses is crucial to the manufacture of dimensionally accurate composite structures. This paper is focused on understanding the fundamental issues leading to residual stresses in thermoset polymer composites and their effect on the dimensional accuracy of the manufactured components. Special emphasis is placed on the simulation of autoclave curing and hot pressing. A three-dimensional coupled thermo-chemo-viscoelastic model is developed to simulate the heat transfer, curing, residual stresses and deformation of a composite part during the entire cure cycle. The predicted values of curvature for cross-ply graphite-epoxy laminates agree well with experimental observations. The numerical result indicates that a significant fraction of the residual stress develops before cooldown. Detailed studies are also performed to examine the springforward phenomenon in L-shaped composite parts. The finite element results show that mold design (male vs. female mold), mold thermal expansion, and part thickness all play an important role on the final shape of the parts.","PeriodicalId":306962,"journal":{"name":"Heat Transfer: Volume 3","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the Manufacturing Process on the Dimensional Accuracy of Thermoset Composites\",\"authors\":\"Qi Zhu, P. Geubelle\",\"doi\":\"10.1115/imece2000-1490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The warpage of thermoset composite structures during the manufacturing process is a direct consequence of residual stress development. The capability to predict residual stresses is crucial to the manufacture of dimensionally accurate composite structures. This paper is focused on understanding the fundamental issues leading to residual stresses in thermoset polymer composites and their effect on the dimensional accuracy of the manufactured components. Special emphasis is placed on the simulation of autoclave curing and hot pressing. A three-dimensional coupled thermo-chemo-viscoelastic model is developed to simulate the heat transfer, curing, residual stresses and deformation of a composite part during the entire cure cycle. The predicted values of curvature for cross-ply graphite-epoxy laminates agree well with experimental observations. The numerical result indicates that a significant fraction of the residual stress develops before cooldown. Detailed studies are also performed to examine the springforward phenomenon in L-shaped composite parts. The finite element results show that mold design (male vs. female mold), mold thermal expansion, and part thickness all play an important role on the final shape of the parts.\",\"PeriodicalId\":306962,\"journal\":{\"name\":\"Heat Transfer: Volume 3\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

热固性复合材料结构在制造过程中的翘曲是残余应力发展的直接结果。预测残余应力的能力对于制造尺寸精确的复合材料结构至关重要。本文的重点是了解导致热固性聚合物复合材料中残余应力的基本问题及其对制造部件尺寸精度的影响。特别强调的是对热压釜固化和热压的模拟。建立了三维热化学粘弹性耦合模型,模拟了复合材料零件在整个固化周期内的传热、固化、残余应力和变形。预测的石墨环氧层合板曲率值与实验结果吻合较好。数值结果表明,残余应力有很大一部分是在冷却前产生的。本文还对l型复合材料零件的弹跳现象进行了详细的研究。有限元结果表明,模具设计(公模与母模)、模具热膨胀和零件厚度都对零件的最终形状起重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of the Manufacturing Process on the Dimensional Accuracy of Thermoset Composites
The warpage of thermoset composite structures during the manufacturing process is a direct consequence of residual stress development. The capability to predict residual stresses is crucial to the manufacture of dimensionally accurate composite structures. This paper is focused on understanding the fundamental issues leading to residual stresses in thermoset polymer composites and their effect on the dimensional accuracy of the manufactured components. Special emphasis is placed on the simulation of autoclave curing and hot pressing. A three-dimensional coupled thermo-chemo-viscoelastic model is developed to simulate the heat transfer, curing, residual stresses and deformation of a composite part during the entire cure cycle. The predicted values of curvature for cross-ply graphite-epoxy laminates agree well with experimental observations. The numerical result indicates that a significant fraction of the residual stress develops before cooldown. Detailed studies are also performed to examine the springforward phenomenon in L-shaped composite parts. The finite element results show that mold design (male vs. female mold), mold thermal expansion, and part thickness all play an important role on the final shape of the parts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信