使用分类数据类型构建数据并行性

D. Skillicorn
{"title":"使用分类数据类型构建数据并行性","authors":"D. Skillicorn","doi":"10.1109/PMMP.1993.315549","DOIUrl":null,"url":null,"abstract":"Data parallelism is a powerful approach to parallel computation, particularly when it is used with complex data types. Categorical data types are extensions of abstract data types that structure computations in a way that is useful for parallel implementation. In particular, they decompose the search for good algorithms on a data type into subproblems, all homomorphisms can be implemented by a single recursive, and often parallel, schema, and they are equipped with an equational system that can be used for software development by transformation.<<ETX>>","PeriodicalId":220365,"journal":{"name":"Proceedings of Workshop on Programming Models for Massively Parallel Computers","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Structuring data parallelism using categorical data types\",\"authors\":\"D. Skillicorn\",\"doi\":\"10.1109/PMMP.1993.315549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data parallelism is a powerful approach to parallel computation, particularly when it is used with complex data types. Categorical data types are extensions of abstract data types that structure computations in a way that is useful for parallel implementation. In particular, they decompose the search for good algorithms on a data type into subproblems, all homomorphisms can be implemented by a single recursive, and often parallel, schema, and they are equipped with an equational system that can be used for software development by transformation.<<ETX>>\",\"PeriodicalId\":220365,\"journal\":{\"name\":\"Proceedings of Workshop on Programming Models for Massively Parallel Computers\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Workshop on Programming Models for Massively Parallel Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PMMP.1993.315549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Workshop on Programming Models for Massively Parallel Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PMMP.1993.315549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

数据并行是一种强大的并行计算方法,尤其是在使用复杂数据类型时。分类数据类型是抽象数据类型的扩展,它以有助于并行执行的方式构造计算。特别是,分类数据类型将在数据类型上寻找好算法的过程分解为多个子问题,所有同态性都可以通过单一递归模式(通常是并行模式)来实现,而且分类数据类型还配备了一个等式系统,可以通过转换用于软件开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structuring data parallelism using categorical data types
Data parallelism is a powerful approach to parallel computation, particularly when it is used with complex data types. Categorical data types are extensions of abstract data types that structure computations in a way that is useful for parallel implementation. In particular, they decompose the search for good algorithms on a data type into subproblems, all homomorphisms can be implemented by a single recursive, and often parallel, schema, and they are equipped with an equational system that can be used for software development by transformation.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信