CPU-GPU集群的MPI-CUDA混合基准套件设计

T. Agarwal, M. Becchi
{"title":"CPU-GPU集群的MPI-CUDA混合基准套件设计","authors":"T. Agarwal, M. Becchi","doi":"10.1145/2628071.2671423","DOIUrl":null,"url":null,"abstract":"In the last few years, GPUs have become an integral part of HPC clusters. To test these heterogeneous CPU-GPU systems, we designed a hybrid CUDA-MPI benchmark suite that consists of three communication- and compute-intensive applications: Matrix Multiplication (MM), Needleman-Wunsch (NW) and the ADFA compression algorithm [1]. The main goal of this work is to characterize these workloads on CPU-GPU clusters. Our benchmark applications are designed to allow cluster administrators to identify bottlenecks in the cluster, to decide if scaling applications to multiple nodes would improve or decrease overall throughput and to design effective scheduling policies. Our experiments show that inter-node communication can significantly degrade the throughput of communication-intensive applications. We conclude that the scalability of the applications depends primarily on two factors: the cluster configuration and the applications characteristics.","PeriodicalId":263670,"journal":{"name":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design of a hybrid MPI-CUDA benchmark suite for CPU-GPU clusters\",\"authors\":\"T. Agarwal, M. Becchi\",\"doi\":\"10.1145/2628071.2671423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few years, GPUs have become an integral part of HPC clusters. To test these heterogeneous CPU-GPU systems, we designed a hybrid CUDA-MPI benchmark suite that consists of three communication- and compute-intensive applications: Matrix Multiplication (MM), Needleman-Wunsch (NW) and the ADFA compression algorithm [1]. The main goal of this work is to characterize these workloads on CPU-GPU clusters. Our benchmark applications are designed to allow cluster administrators to identify bottlenecks in the cluster, to decide if scaling applications to multiple nodes would improve or decrease overall throughput and to design effective scheduling policies. Our experiments show that inter-node communication can significantly degrade the throughput of communication-intensive applications. We conclude that the scalability of the applications depends primarily on two factors: the cluster configuration and the applications characteristics.\",\"PeriodicalId\":263670,\"journal\":{\"name\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2628071.2671423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd International Conference on Parallel Architecture and Compilation (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2628071.2671423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在过去的几年里,gpu已经成为高性能计算集群的一个组成部分。为了测试这些异构CPU-GPU系统,我们设计了一个混合CUDA-MPI基准套件,该套件由三个通信和计算密集型应用程序组成:矩阵乘法(MM), Needleman-Wunsch (NW)和ADFA压缩算法[1]。这项工作的主要目标是在CPU-GPU集群上描述这些工作负载。我们的基准测试应用程序旨在允许集群管理员识别集群中的瓶颈,决定将应用程序扩展到多个节点是否会提高或降低总体吞吐量,并设计有效的调度策略。我们的实验表明,节点间通信会显著降低通信密集型应用的吞吐量。我们得出结论,应用程序的可伸缩性主要取决于两个因素:集群配置和应用程序特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a hybrid MPI-CUDA benchmark suite for CPU-GPU clusters
In the last few years, GPUs have become an integral part of HPC clusters. To test these heterogeneous CPU-GPU systems, we designed a hybrid CUDA-MPI benchmark suite that consists of three communication- and compute-intensive applications: Matrix Multiplication (MM), Needleman-Wunsch (NW) and the ADFA compression algorithm [1]. The main goal of this work is to characterize these workloads on CPU-GPU clusters. Our benchmark applications are designed to allow cluster administrators to identify bottlenecks in the cluster, to decide if scaling applications to multiple nodes would improve or decrease overall throughput and to design effective scheduling policies. Our experiments show that inter-node communication can significantly degrade the throughput of communication-intensive applications. We conclude that the scalability of the applications depends primarily on two factors: the cluster configuration and the applications characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信