{"title":"轮毂电动汽车轴向磁通SRM转矩体积密度最大化设计","authors":"H. Goto, S. Murakami, O. Ichinokura","doi":"10.1109/IECON.2015.7392915","DOIUrl":null,"url":null,"abstract":"Switched Reluctance Motor (SRM) attracts attention as motor that use no rare earth materials. And it is a candidate technology for electric vehicle application. In addition, Axial-Flux structure has possibility of effective utilization of In-Wheel flat motor space. However, it is not established how to decide optimum design of Axial-Flux SRM (AFSRM). This paper mainly discusses the reduction in size and weight of AFSRM. First, the optimum ratio of SRM's diameter and axial length (diameter/axial length) for increase torque-volume density is examined using FEA. So, the optimum stator pole length regarding to the diameter for maximum torque-volume density is found. After that, a double stator AFSRM is designed for EV.","PeriodicalId":190550,"journal":{"name":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Design to maximize torque-volume density of axial-flux SRM for in-wheel EV\",\"authors\":\"H. Goto, S. Murakami, O. Ichinokura\",\"doi\":\"10.1109/IECON.2015.7392915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Switched Reluctance Motor (SRM) attracts attention as motor that use no rare earth materials. And it is a candidate technology for electric vehicle application. In addition, Axial-Flux structure has possibility of effective utilization of In-Wheel flat motor space. However, it is not established how to decide optimum design of Axial-Flux SRM (AFSRM). This paper mainly discusses the reduction in size and weight of AFSRM. First, the optimum ratio of SRM's diameter and axial length (diameter/axial length) for increase torque-volume density is examined using FEA. So, the optimum stator pole length regarding to the diameter for maximum torque-volume density is found. After that, a double stator AFSRM is designed for EV.\",\"PeriodicalId\":190550,\"journal\":{\"name\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.2015.7392915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.2015.7392915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design to maximize torque-volume density of axial-flux SRM for in-wheel EV
Switched Reluctance Motor (SRM) attracts attention as motor that use no rare earth materials. And it is a candidate technology for electric vehicle application. In addition, Axial-Flux structure has possibility of effective utilization of In-Wheel flat motor space. However, it is not established how to decide optimum design of Axial-Flux SRM (AFSRM). This paper mainly discusses the reduction in size and weight of AFSRM. First, the optimum ratio of SRM's diameter and axial length (diameter/axial length) for increase torque-volume density is examined using FEA. So, the optimum stator pole length regarding to the diameter for maximum torque-volume density is found. After that, a double stator AFSRM is designed for EV.