主题跟踪关键技术研究

Shengdong Li, Xueqiang Lv, Hongwei Wang, Shuicai Shi
{"title":"主题跟踪关键技术研究","authors":"Shengdong Li, Xueqiang Lv, Hongwei Wang, Shuicai Shi","doi":"10.1109/SKG.2010.39","DOIUrl":null,"url":null,"abstract":"Text classification is the key technology for topic tracking, and vector space model (VSM) is one of the most simple and effective model for topics representation. On the basis of Knearest neighbor (KNN) algorithm for text classification and support vector machines (SVM) algorithm for text classification, we have studied how they affect topic tracking. Then we get the variation law that they affect topic tracking, and add up their optimal values in topic tracking. Finally, TDT evaluation method proves that optimal topic tracking performance based on SVM increases by 35.134% more than KNN.","PeriodicalId":105513,"journal":{"name":"2010 Sixth International Conference on Semantics, Knowledge and Grids","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on Key Technology for Topic Tracking\",\"authors\":\"Shengdong Li, Xueqiang Lv, Hongwei Wang, Shuicai Shi\",\"doi\":\"10.1109/SKG.2010.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Text classification is the key technology for topic tracking, and vector space model (VSM) is one of the most simple and effective model for topics representation. On the basis of Knearest neighbor (KNN) algorithm for text classification and support vector machines (SVM) algorithm for text classification, we have studied how they affect topic tracking. Then we get the variation law that they affect topic tracking, and add up their optimal values in topic tracking. Finally, TDT evaluation method proves that optimal topic tracking performance based on SVM increases by 35.134% more than KNN.\",\"PeriodicalId\":105513,\"journal\":{\"name\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Sixth International Conference on Semantics, Knowledge and Grids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SKG.2010.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Semantics, Knowledge and Grids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKG.2010.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

文本分类是主题跟踪的关键技术,而向量空间模型(VSM)是最简单有效的主题表示模型之一。在文本分类的最近邻算法(KNN)和文本分类的支持向量机算法(SVM)的基础上,研究了它们对主题跟踪的影响。得到了它们对主题跟踪影响的变化规律,并对它们在主题跟踪中的最优值进行了相加。最后,TDT评价方法证明基于SVM的最优主题跟踪性能比KNN提高了35.134%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Key Technology for Topic Tracking
Text classification is the key technology for topic tracking, and vector space model (VSM) is one of the most simple and effective model for topics representation. On the basis of Knearest neighbor (KNN) algorithm for text classification and support vector machines (SVM) algorithm for text classification, we have studied how they affect topic tracking. Then we get the variation law that they affect topic tracking, and add up their optimal values in topic tracking. Finally, TDT evaluation method proves that optimal topic tracking performance based on SVM increases by 35.134% more than KNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信