{"title":"片上网络架构中的低能量映射和路由技术","authors":"K. Srinivasan, Karam S. Chatha","doi":"10.1145/1077603.1077695","DOIUrl":null,"url":null,"abstract":"Network-on-chip (NoC) has been proposed as a solution for the global communication challenges of system-on-chip (SoC) design in the nanoscale technologies. NoC design with mesh based topologies requires mapping of cores to router ports, and routing of traffic traces such that the bandwidth and latency constraints are satisfied. The authors presented a novel automated design technique that solves the mesh based NoC design problem with an objective of minimizing the communication energy. In contrast to existing research that only take bandwidth constraints as inputs, the technique solves the NoC design problem in the presence of bandwidth as well as latency constraints. The technique was compared with a recent work called NMAP and an optimal MILP based formulation. It is proven that the complexity of the technique is lower than that of NMAP. For the latency constrained case, while NMAP fails on most test cases, the technique is able to generate high quality results. In comparison to the MILP formulation, the results produced by our technique are within 14 % of the optimal.","PeriodicalId":256018,"journal":{"name":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"140","resultStr":"{\"title\":\"A technique for low energy mapping and routing in network-on-chip architectures\",\"authors\":\"K. Srinivasan, Karam S. Chatha\",\"doi\":\"10.1145/1077603.1077695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network-on-chip (NoC) has been proposed as a solution for the global communication challenges of system-on-chip (SoC) design in the nanoscale technologies. NoC design with mesh based topologies requires mapping of cores to router ports, and routing of traffic traces such that the bandwidth and latency constraints are satisfied. The authors presented a novel automated design technique that solves the mesh based NoC design problem with an objective of minimizing the communication energy. In contrast to existing research that only take bandwidth constraints as inputs, the technique solves the NoC design problem in the presence of bandwidth as well as latency constraints. The technique was compared with a recent work called NMAP and an optimal MILP based formulation. It is proven that the complexity of the technique is lower than that of NMAP. For the latency constrained case, while NMAP fails on most test cases, the technique is able to generate high quality results. In comparison to the MILP formulation, the results produced by our technique are within 14 % of the optimal.\",\"PeriodicalId\":256018,\"journal\":{\"name\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"140\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1077603.1077695\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED '05. Proceedings of the 2005 International Symposium on Low Power Electronics and Design, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1077603.1077695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A technique for low energy mapping and routing in network-on-chip architectures
Network-on-chip (NoC) has been proposed as a solution for the global communication challenges of system-on-chip (SoC) design in the nanoscale technologies. NoC design with mesh based topologies requires mapping of cores to router ports, and routing of traffic traces such that the bandwidth and latency constraints are satisfied. The authors presented a novel automated design technique that solves the mesh based NoC design problem with an objective of minimizing the communication energy. In contrast to existing research that only take bandwidth constraints as inputs, the technique solves the NoC design problem in the presence of bandwidth as well as latency constraints. The technique was compared with a recent work called NMAP and an optimal MILP based formulation. It is proven that the complexity of the technique is lower than that of NMAP. For the latency constrained case, while NMAP fails on most test cases, the technique is able to generate high quality results. In comparison to the MILP formulation, the results produced by our technique are within 14 % of the optimal.