{"title":"智能课堂中的学生行为识别数据库","authors":"Xiaomeng Li, Min Wang, Weizhen Zeng, Weigang Lu","doi":"10.1109/ICCSE.2019.8845330","DOIUrl":null,"url":null,"abstract":"With the development of human action recognition, it is possible to automatically recognize students’ actions in classroom, providing a new direction for classroom observation in teaching research. Training effective students’ action recognition algorithms depends significantly on the quality of the action database. However, only a few existing action databases focus on learning environment. In this paper, we contribute to this topic from two aspects. First, a novel students’ action recognition database is introduced. The spontaneous action database consists 15 action categories, 817 video clips of 73 students, which are collected in real smart classroom environment. Second, a benchmark experiment was conducted on the database using two kinds of recognition algorithms. The best result is achieved by Inception V3 with 0.9310 accuracy. Such a spontaneous database will help in the development and validation of algorithms for action recognition in learning environment.","PeriodicalId":351346,"journal":{"name":"2019 14th International Conference on Computer Science & Education (ICCSE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Students’ Action Recognition Database In Smart Classroom\",\"authors\":\"Xiaomeng Li, Min Wang, Weizhen Zeng, Weigang Lu\",\"doi\":\"10.1109/ICCSE.2019.8845330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of human action recognition, it is possible to automatically recognize students’ actions in classroom, providing a new direction for classroom observation in teaching research. Training effective students’ action recognition algorithms depends significantly on the quality of the action database. However, only a few existing action databases focus on learning environment. In this paper, we contribute to this topic from two aspects. First, a novel students’ action recognition database is introduced. The spontaneous action database consists 15 action categories, 817 video clips of 73 students, which are collected in real smart classroom environment. Second, a benchmark experiment was conducted on the database using two kinds of recognition algorithms. The best result is achieved by Inception V3 with 0.9310 accuracy. Such a spontaneous database will help in the development and validation of algorithms for action recognition in learning environment.\",\"PeriodicalId\":351346,\"journal\":{\"name\":\"2019 14th International Conference on Computer Science & Education (ICCSE)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 14th International Conference on Computer Science & Education (ICCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSE.2019.8845330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2019.8845330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Students’ Action Recognition Database In Smart Classroom
With the development of human action recognition, it is possible to automatically recognize students’ actions in classroom, providing a new direction for classroom observation in teaching research. Training effective students’ action recognition algorithms depends significantly on the quality of the action database. However, only a few existing action databases focus on learning environment. In this paper, we contribute to this topic from two aspects. First, a novel students’ action recognition database is introduced. The spontaneous action database consists 15 action categories, 817 video clips of 73 students, which are collected in real smart classroom environment. Second, a benchmark experiment was conducted on the database using two kinds of recognition algorithms. The best result is achieved by Inception V3 with 0.9310 accuracy. Such a spontaneous database will help in the development and validation of algorithms for action recognition in learning environment.