代码生成器系列的自动非功能测试

M. Boussaa, Olivier Barais, B. Baudry, G. Sunyé
{"title":"代码生成器系列的自动非功能测试","authors":"M. Boussaa, Olivier Barais, B. Baudry, G. Sunyé","doi":"10.1145/2993236.2993256","DOIUrl":null,"url":null,"abstract":"The intensive use of generative programming techniques provides an elegant engineering solution to deal with the heterogeneity of platforms and technological stacks. The use of domain-specific languages for example, leads to the creation of numerous code generators that automatically translate highlevel system specifications into multi-target executable code. Producing correct and efficient code generator is complex and error-prone. Although software designers provide generally high-level test suites to verify the functional outcome of generated code, it remains challenging and tedious to verify the behavior of produced code in terms of non-functional properties. This paper describes a practical approach based on a runtime monitoring infrastructure to automatically check the potential inefficient code generators. This infrastructure, based on system containers as execution platforms, allows code-generator developers to evaluate the generated code performance. We evaluate our approach by analyzing the performance of Haxe, a popular high-level programming language that involves a set of cross-platform code generators. Experimental results show that our approach is able to detect some performance inconsistencies that reveal real issues in Haxe code generators.","PeriodicalId":405898,"journal":{"name":"Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic non-functional testing of code generators families\",\"authors\":\"M. Boussaa, Olivier Barais, B. Baudry, G. Sunyé\",\"doi\":\"10.1145/2993236.2993256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intensive use of generative programming techniques provides an elegant engineering solution to deal with the heterogeneity of platforms and technological stacks. The use of domain-specific languages for example, leads to the creation of numerous code generators that automatically translate highlevel system specifications into multi-target executable code. Producing correct and efficient code generator is complex and error-prone. Although software designers provide generally high-level test suites to verify the functional outcome of generated code, it remains challenging and tedious to verify the behavior of produced code in terms of non-functional properties. This paper describes a practical approach based on a runtime monitoring infrastructure to automatically check the potential inefficient code generators. This infrastructure, based on system containers as execution platforms, allows code-generator developers to evaluate the generated code performance. We evaluate our approach by analyzing the performance of Haxe, a popular high-level programming language that involves a set of cross-platform code generators. Experimental results show that our approach is able to detect some performance inconsistencies that reveal real issues in Haxe code generators.\",\"PeriodicalId\":405898,\"journal\":{\"name\":\"Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2993236.2993256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993236.2993256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

生成式编程技术的大量使用为处理平台和技术栈的异构性提供了一种优雅的工程解决方案。例如,使用特定于领域的语言会导致创建大量代码生成器,这些代码生成器会自动将高级系统规范转换为多目标可执行代码。生成正确有效的代码生成器是复杂且容易出错的。尽管软件设计人员通常提供高级的测试套件来验证所生成代码的功能结果,但是根据非功能属性来验证所生成代码的行为仍然是具有挑战性和乏味的。本文描述了一种基于运行时监视基础结构的实用方法,以自动检查潜在的低效代码生成器。这种基于系统容器作为执行平台的基础结构,允许代码生成器开发人员评估生成的代码性能。我们通过分析Haxe(一种流行的高级编程语言,包含一组跨平台代码生成器)的性能来评估我们的方法。实验结果表明,我们的方法能够检测出一些性能不一致,这些不一致揭示了Haxe代码生成器中的实际问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic non-functional testing of code generators families
The intensive use of generative programming techniques provides an elegant engineering solution to deal with the heterogeneity of platforms and technological stacks. The use of domain-specific languages for example, leads to the creation of numerous code generators that automatically translate highlevel system specifications into multi-target executable code. Producing correct and efficient code generator is complex and error-prone. Although software designers provide generally high-level test suites to verify the functional outcome of generated code, it remains challenging and tedious to verify the behavior of produced code in terms of non-functional properties. This paper describes a practical approach based on a runtime monitoring infrastructure to automatically check the potential inefficient code generators. This infrastructure, based on system containers as execution platforms, allows code-generator developers to evaluate the generated code performance. We evaluate our approach by analyzing the performance of Haxe, a popular high-level programming language that involves a set of cross-platform code generators. Experimental results show that our approach is able to detect some performance inconsistencies that reveal real issues in Haxe code generators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信