用于阿拉伯语方言识别的字符级卷积BiLSTM

Mohamed S. Elaraby, A. Zahran
{"title":"用于阿拉伯语方言识别的字符级卷积BiLSTM","authors":"Mohamed S. Elaraby, A. Zahran","doi":"10.18653/v1/W19-4636","DOIUrl":null,"url":null,"abstract":"In this paper, we describe CU-RAISA teamcontribution to the 2019Madar shared task2, which focused on Twitter User fine-grained dialect identification.Among par-ticipating teams, our system ranked the4th(with 61.54%) F1-Macro measure.Our sys-tem is trained using a character level convo-lutional bidirectional long-short-term memorynetwork trained on 2k users’ data. We showthat training on concatenated user tweets asinput is further superior to training on usertweets separately and assign user’s label on themode of user’s tweets’ predictions.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Character Level Convolutional BiLSTM for Arabic Dialect Identification\",\"authors\":\"Mohamed S. Elaraby, A. Zahran\",\"doi\":\"10.18653/v1/W19-4636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe CU-RAISA teamcontribution to the 2019Madar shared task2, which focused on Twitter User fine-grained dialect identification.Among par-ticipating teams, our system ranked the4th(with 61.54%) F1-Macro measure.Our sys-tem is trained using a character level convo-lutional bidirectional long-short-term memorynetwork trained on 2k users’ data. We showthat training on concatenated user tweets asinput is further superior to training on usertweets separately and assign user’s label on themode of user’s tweets’ predictions.\",\"PeriodicalId\":268163,\"journal\":{\"name\":\"WANLP@ACL 2019\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WANLP@ACL 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W19-4636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们描述了CU-RAISA团队对2019Madar共享任务2的贡献,该任务侧重于Twitter用户细粒度方言识别。在参与团队中,我们的系统排名第4(61.54%)-宏观措施。我们的系统使用字符级卷积双向长短期记忆网络进行训练,该网络训练了2k个用户的数据。我们证明了将用户tweet连接起来作为输入的训练进一步优于单独对用户tweet进行训练,并在用户tweet的预测模式上分配用户标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Character Level Convolutional BiLSTM for Arabic Dialect Identification
In this paper, we describe CU-RAISA teamcontribution to the 2019Madar shared task2, which focused on Twitter User fine-grained dialect identification.Among par-ticipating teams, our system ranked the4th(with 61.54%) F1-Macro measure.Our sys-tem is trained using a character level convo-lutional bidirectional long-short-term memorynetwork trained on 2k users’ data. We showthat training on concatenated user tweets asinput is further superior to training on usertweets separately and assign user’s label on themode of user’s tweets’ predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信