复杂场景生成的多尺度对比学习

Hanbit Lee, Youna Kim, Sang-goo Lee
{"title":"复杂场景生成的多尺度对比学习","authors":"Hanbit Lee, Youna Kim, Sang-goo Lee","doi":"10.1109/WACV56688.2023.00083","DOIUrl":null,"url":null,"abstract":"Recent advances in Generative Adversarial Networks (GANs) have enabled photo-realistic synthesis of single object images. Yet, modeling more complex distributions, such as scenes with multiple objects, remains challenging. The difficulty stems from the incalculable variety of scene configurations which contain multiple objects of different categories placed at various locations. In this paper, we aim to alleviate the difficulty by enhancing the discriminative ability of the discriminator through a locally defined self-supervised pretext task. To this end, we design a discriminator to leverage multi-scale local feedback that guides the generator to better model local semantic structures in the scene. Then, we require the discriminator to carry out pixel-level contrastive learning at multiple scales to enhance discriminative capability on local regions. Experimental results on several challenging scene datasets show that our method improves the synthesis quality by a substantial margin compared to state-of-the-art baselines.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-scale Contrastive Learning for Complex Scene Generation\",\"authors\":\"Hanbit Lee, Youna Kim, Sang-goo Lee\",\"doi\":\"10.1109/WACV56688.2023.00083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advances in Generative Adversarial Networks (GANs) have enabled photo-realistic synthesis of single object images. Yet, modeling more complex distributions, such as scenes with multiple objects, remains challenging. The difficulty stems from the incalculable variety of scene configurations which contain multiple objects of different categories placed at various locations. In this paper, we aim to alleviate the difficulty by enhancing the discriminative ability of the discriminator through a locally defined self-supervised pretext task. To this end, we design a discriminator to leverage multi-scale local feedback that guides the generator to better model local semantic structures in the scene. Then, we require the discriminator to carry out pixel-level contrastive learning at multiple scales to enhance discriminative capability on local regions. Experimental results on several challenging scene datasets show that our method improves the synthesis quality by a substantial margin compared to state-of-the-art baselines.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

生成对抗网络(GANs)的最新进展使单个对象图像的逼真合成成为可能。然而,建模更复杂的分布,例如具有多个对象的场景,仍然具有挑战性。这种困难源于难以计算的各种场景配置,其中包含放置在不同位置的多个不同类别的物体。在本文中,我们旨在通过局部定义的自监督借口任务来提高鉴别器的判别能力,从而缓解这一困难。为此,我们设计了一个鉴别器来利用多尺度局部反馈,引导生成器更好地模拟场景中的局部语义结构。然后,我们要求鉴别器在多个尺度上进行像素级的对比学习,以增强局部区域的判别能力。在几个具有挑战性的场景数据集上的实验结果表明,与最先进的基线相比,我们的方法大大提高了合成质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-scale Contrastive Learning for Complex Scene Generation
Recent advances in Generative Adversarial Networks (GANs) have enabled photo-realistic synthesis of single object images. Yet, modeling more complex distributions, such as scenes with multiple objects, remains challenging. The difficulty stems from the incalculable variety of scene configurations which contain multiple objects of different categories placed at various locations. In this paper, we aim to alleviate the difficulty by enhancing the discriminative ability of the discriminator through a locally defined self-supervised pretext task. To this end, we design a discriminator to leverage multi-scale local feedback that guides the generator to better model local semantic structures in the scene. Then, we require the discriminator to carry out pixel-level contrastive learning at multiple scales to enhance discriminative capability on local regions. Experimental results on several challenging scene datasets show that our method improves the synthesis quality by a substantial margin compared to state-of-the-art baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信