Python、性能和自然语言处理

Aleksandr Drozd, Anna Gladkova, S. Matsuoka
{"title":"Python、性能和自然语言处理","authors":"Aleksandr Drozd, Anna Gladkova, S. Matsuoka","doi":"10.1145/2835857.2835858","DOIUrl":null,"url":null,"abstract":"We present a case study of Python-based workflow for a data-intensive natural language processing problem, namely word classification with vector space model methodology. Problems in the area of natural language processing are typically solved in many steps which require transformation of the data to vastly different formats (in our case, raw text to sparse matrices to dense vectors). A Python implementation for each of these steps would require a different solution. We survey existing approaches to using Python for high-performance processing of large volumes of data, and we propose a sample solution for each step for our case study (aspectual classification of Russian verbs), attempting to preserve both efficiency and user-friendliness. For the most computationally intensive part of the workflow we develop a prototype distributed implementation of co-occurrence extraction module using IPython.parallel cluster.","PeriodicalId":171838,"journal":{"name":"Workshop on Python for High-Performance and Scientific Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Python, performance, and natural language processing\",\"authors\":\"Aleksandr Drozd, Anna Gladkova, S. Matsuoka\",\"doi\":\"10.1145/2835857.2835858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a case study of Python-based workflow for a data-intensive natural language processing problem, namely word classification with vector space model methodology. Problems in the area of natural language processing are typically solved in many steps which require transformation of the data to vastly different formats (in our case, raw text to sparse matrices to dense vectors). A Python implementation for each of these steps would require a different solution. We survey existing approaches to using Python for high-performance processing of large volumes of data, and we propose a sample solution for each step for our case study (aspectual classification of Russian verbs), attempting to preserve both efficiency and user-friendliness. For the most computationally intensive part of the workflow we develop a prototype distributed implementation of co-occurrence extraction module using IPython.parallel cluster.\",\"PeriodicalId\":171838,\"journal\":{\"name\":\"Workshop on Python for High-Performance and Scientific Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Python for High-Performance and Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2835857.2835858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Python for High-Performance and Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2835857.2835858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一个基于python的工作流的案例研究,用于数据密集型自然语言处理问题,即向量空间模型方法的词分类。自然语言处理领域的问题通常需要通过许多步骤来解决,这些步骤需要将数据转换为截然不同的格式(在我们的例子中,从原始文本到稀疏矩阵再到密集向量)。每个步骤的Python实现都需要不同的解决方案。我们调查了使用Python高性能处理大量数据的现有方法,并为我们的案例研究(俄语动词的方面分类)的每个步骤提出了一个示例解决方案,试图同时保持效率和用户友好性。对于工作流中计算量最大的部分,我们使用IPython开发了一个共现抽取模块的原型分布式实现。并行集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Python, performance, and natural language processing
We present a case study of Python-based workflow for a data-intensive natural language processing problem, namely word classification with vector space model methodology. Problems in the area of natural language processing are typically solved in many steps which require transformation of the data to vastly different formats (in our case, raw text to sparse matrices to dense vectors). A Python implementation for each of these steps would require a different solution. We survey existing approaches to using Python for high-performance processing of large volumes of data, and we propose a sample solution for each step for our case study (aspectual classification of Russian verbs), attempting to preserve both efficiency and user-friendliness. For the most computationally intensive part of the workflow we develop a prototype distributed implementation of co-occurrence extraction module using IPython.parallel cluster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信