ERS-1图像分割的多分辨率分析方案

A. Serir, B. Sansal, A. Serir
{"title":"ERS-1图像分割的多分辨率分析方案","authors":"A. Serir, B. Sansal, A. Serir","doi":"10.1109/TFSA.1996.550099","DOIUrl":null,"url":null,"abstract":"We exploit the speckle information to provide ERS-1 images segmentation into regions, with reference to roughness. We describe a new segmentation scheme by using multi-scale information related to multifractal dimensions. We show that two different natural regions will give on radar imaging different roughness. The roughness characteristic may be considered as preliminary segmentation criterion. The natural measure of roughness is the fractal dimension. But the main characteristic of a fractal is its self -similarity. To keep the scale invariant pattern, a multiresolution technique is then incorporated to reduce the noisy roughness. This method associated to local fractal dimensions provides a good preliminary roughness segmentation scheme.","PeriodicalId":415923,"journal":{"name":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","volume":"7 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiresolution analysis scheme for ERS-1 image segmentation\",\"authors\":\"A. Serir, B. Sansal, A. Serir\",\"doi\":\"10.1109/TFSA.1996.550099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We exploit the speckle information to provide ERS-1 images segmentation into regions, with reference to roughness. We describe a new segmentation scheme by using multi-scale information related to multifractal dimensions. We show that two different natural regions will give on radar imaging different roughness. The roughness characteristic may be considered as preliminary segmentation criterion. The natural measure of roughness is the fractal dimension. But the main characteristic of a fractal is its self -similarity. To keep the scale invariant pattern, a multiresolution technique is then incorporated to reduce the noisy roughness. This method associated to local fractal dimensions provides a good preliminary roughness segmentation scheme.\",\"PeriodicalId\":415923,\"journal\":{\"name\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"volume\":\"7 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TFSA.1996.550099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TFSA.1996.550099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用散斑信息将ERS-1图像分割成区域,并参考粗糙度。提出了一种利用多分维相关的多尺度信息进行分割的新方案。结果表明,两种不同的自然区域在雷达成像上的粗糙度是不同的。粗糙度特征可以作为初步的分割准则。粗糙度的自然度量是分形维数。但分形的主要特征是它的自相似性。为了保持尺度不变的模式,然后采用多分辨率技术来降低噪声粗糙度。该方法与局部分形维数相结合,提供了较好的粗糙度初步分割方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiresolution analysis scheme for ERS-1 image segmentation
We exploit the speckle information to provide ERS-1 images segmentation into regions, with reference to roughness. We describe a new segmentation scheme by using multi-scale information related to multifractal dimensions. We show that two different natural regions will give on radar imaging different roughness. The roughness characteristic may be considered as preliminary segmentation criterion. The natural measure of roughness is the fractal dimension. But the main characteristic of a fractal is its self -similarity. To keep the scale invariant pattern, a multiresolution technique is then incorporated to reduce the noisy roughness. This method associated to local fractal dimensions provides a good preliminary roughness segmentation scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信